精英家教网 > 高中数学 > 题目详情
10.如果二次函数y=-2x2+(a-1)x-3,在区间(-∞,1]上是增函数,则(  )
A.a=5B.a=3C.a≥5D.a≤-3

分析 由二次函数的解析式,我们易判断二次函数的开口方向及对称轴,结合函数在区间(-∞,1]上是增函数及二次函数的性质我们易判断区间(-∞,1]与对称轴的关系,进而构造出一个关于a的不等式,解不等式即可得到a的取值范围.

解答 解:二次函数y=-2x2+(a-1)x-3的图象是开口方向朝下,
以直线x=$\frac{a-1}{4}$为对称轴的抛物线,
∵函数在区间(-∞,1]上是增函数
则1≤$\frac{a-1}{4}$,解得a≥5,
故选:C

点评 本题考查的知识点是函数单调性的性质,其中利用二次函数的性质构造出一个关于a的不等式,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥S-ABCD的底面ABCD是正方形,SA⊥平面ABCD,SA=$\sqrt{2}$AB,点E在棱SC上.
(Ⅰ)若SA∥平面BDE,求证:AC⊥平面BDE;
(Ⅱ)在(Ⅰ)的条件下,求AD与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知M(1+cos2x,1),N(1,$\sqrt{3}$sin2x+a)( x∈R,a为常数a∈R),且y=$\overrightarrow{OM}$•$\overrightarrow{ON}$(O为坐标原点).
(1)求y关于x的函数关系式y=f(x);
(2)若x∈[0,$\frac{π}{2}$]时,f(x)的最大值为2,求a的值;
(3)在满足(2)的条件下,说明f(x)的图象可由y=2sinx的图象如何变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=$\frac{1}{3}$CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,求BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)是定义在R上的偶函数,当x≥0时,f(x)=$\sqrt{x+2}$.
(1)当x<0时,求f(x)的解析式;
(2)当m∈R时,试比较f(m-1)和f(3-m)的大小;
(3)求最小的整数m(m≥-2),使得存在实数t,对任意的x∈[m,10],都有f(x+t)≤x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合M={x|y=ln(1-x)},N={y|y=ex,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R上的偶函数,并满足f(x+2)=-$\frac{1}{f(x)}$,当1≤x≤2时,f(x)=x-2.则f(6.5)等于(  )
A.4.5B.-4.5C.-0.5D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得$\frac{f{(x}_{1})+f{(x}_{2})}{2}$=M,则称函数f(x)在I上的“均值”为M,已知f(x)=x2+log2x,x∈[1,4],则函数f(x)=x2+log2x,x∈[1,4]上的“均值”为$\frac{19}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=5,向量$\overrightarrow{c}$-$\overrightarrow{a}$,$\overrightarrow{c}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{c}$-$\overrightarrow{a}$|=2$\sqrt{3}$,则向量$\overrightarrow{a}$•$\overrightarrow{c}$的最大值为24.

查看答案和解析>>

同步练习册答案