精英家教网 > 高中数学 > 题目详情

已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e.
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。

(1);(2)不在椭圆上

解析试题分析:(1)由题可得l的方程为    2分)
              4分
               5分
(2)设原点关于l的对称点为,则 9分
,即:其对称点不在椭圆上           12分
考点:本题考查了椭圆方程的性质
点评:熟练运用几何关系转化为椭圆中a,b,c的关系求解离心率,有关点关于直线的对称问题,要注意求解的步骤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点到两点的距离之和等于4,设点的轨迹为,直线与轨迹交于两点.
(Ⅰ)写出轨迹的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为为参数).
(1)求曲线的直角坐标方程以及曲线的普通方程;
(2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的上顶点为,左焦点为,直线与圆相切.过点的直线与椭圆交于两点.
(I)求椭圆的方程;
(II)当的面积达到最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点,点轴上方,直线与抛物线相切.
(1)求抛物线的方程和点的坐标;
(2)设A,B是抛物线C上两动点,如果直线轴分别交于点. 是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案