精英家教网 > 高中数学 > 题目详情
双曲线的中心是原点O,它的虚轴长为2,相应的焦点F(c,0)(c>0)的准线l与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.

(1)求双曲线的方程及离心率;

(2)若=0,求直线PQ的方程.

解析:(1)由题意,设曲线的方程为=1(a>0,b>0)

由已知解得a=,c=3,

所以双曲线的方程为=1离心率e=3;

(2)由(1)知A(1,0),F(3,0),当直线PQ与x轴垂直时,PQ方程为x=3.此时,≠0,应舍去.当直线PQ与x轴不垂直时,设直线PQ的方程为y=k(x-3).

由方程组得(k2-2)x2-6k2x+9k2+6=0

由于过点F的直线与双曲线交于P、Q两点,

则k2-2≠0,即k≠±,由于

Δ=36k4-4(k2-2)(9k2+6)=48(k2+1)>0

∴k∈R且k≠±.(*)

设P(x1,y1),Q(x2,y2),则

由直线PQ的方程得y1=k(x1-3),y2=k(x2-3),

于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9].                     ③

=0,

∴(x1-1,y1)·(x1-1,y2)=0,

即x1x2-(x1+x2)+1+y1y2=0.                                                       ④

由①②③④得

+1+k2(-3+9)=0

整理得k2=,∴k=±满足(*).

∴直线PQ的方程为x-y-3=0或x+y-3=0.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线的中心是原点O,它的虚轴长为2
6
,右焦点为F(c,0)(c>0),直线l:x=
a2
c
与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若
AP
AQ
=0,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•宝坻区二模)双曲线的中心是原点O,它的虚轴长为2
6
,相应于焦点F(c,0)(c>0)的准线l与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程及离心率;
(Ⅱ)若
AP
AQ
=0,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线的中心是原点O,它的虚轴长为2
6
,右焦点为F(c,0)(c>0),直线l:x=
a2
c
与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若
AP
AQ
=0,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:2005-2006学年北京市东城区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

双曲线的中心是原点O,它的虚轴长为,右焦点为F(c,0)(c>0),直线l:与x轴交于点A,且|OF|=3|OA|.过点F的直线与双曲线交于P、Q两点.
(Ⅰ)求双曲线的方程;
(Ⅱ)若=0,求直线PQ的方程.

查看答案和解析>>

同步练习册答案