A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
分析 根据直线的斜率等于倾斜角的正切值,得到tanα的值,然后根据同角三角函数间的基本关系和二倍角的余弦,将cos2α化为关于tanα的式子,代入求值.
解答 解:由题意知:直线的斜率k=tanα=-$\frac{1}{3}$,
∴cos2α=cos2α-sin2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{1-\frac{1}{9}}{1+\frac{1}{9}}$=$\frac{4}{5}$.
故选:C.
点评 本题考查了直线的斜率与倾斜角之间的关系,二倍角的余弦,注意灵活运用同角三角函数间的基本关系化简求值,难度不大.
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{25}$ | B. | -$\frac{7}{25}$ | C. | $\frac{25}{7}$ | D. | -$\frac{25}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | S2016=2016,a2010<a7 | B. | S2016=2016,a2010>a7 | ||
C. | S2016=-2016,a2010<a7 | D. | S2016=-2016,a2010>a7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{e}$) | B. | [$\frac{1}{e}$,+∞) | C. | (-∞,$\frac{1}{e}$] | D. | [e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com