精英家教网 > 高中数学 > 题目详情
已知函数y=sinx的定义域为[a,b],值域为[-1,
1
2
]
,则b-a的值不可能是(  )
A、
π
3
B、
3
C、π
D、
3
分析:先确定一个周期内满足题意的b和a的取值,再根据正弦函数的周期性求出整个定义域上的区间,由此进行判断.
解答:解:由正弦曲线知,在一个周期内sin
π
6
=sin
6
=
1
2
,sin
2
=-1,
∴a=
6
2
≤b≤2π+
π
6
,∴|
3
+2kπ|≤b-a≤|
3
+2kπ|(k∈z),
当k=0或-1时,则可能为B和D中的值,
由正弦曲线知,当a=
6
,b=
11π
6
时,也满足条件.
故选A.
点评:本题考查了正弦函数的曲线和周期性应用,根据正弦函数(余弦函数)的曲线和性质进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=(sinx+cosx)2+2
3
cos2x
求它的最大、最小值,并指明函数取最大、最小值时相应x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+
3
cosx

(1)求它的最小正周期和最大值;
(2)求它的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx在点(
π
3
3
2
)
的切线与y=log2x在点A处的切线平行,则点A的横坐标是
2log2e.(注:填
2
ln2
也给分)
2log2e.(注:填
2
ln2
也给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+cosx,给出下列四个命题:
(1)若x∈[0,
π
2
]
,则y∈(0,
2
]

(2)直线x=-
4
是函数y=sinx+cosx图象的一条对称轴;
(3)在区间[
π
4
4
]
上函数y=sinx+cosx是减函数;
(4)函数y=sinx+cosx的图象可由y=
2
sinx
的图象向右平移
π
4
个单位而得到.其中正确命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+cosx,y=2
2
sinxcosx
,则下列结论中,正确的序号是

①两函数的图象均关于点(-
π
4
,0)成中心对称;
②两函数的图象均关于直线x=-
π
4
成轴对称;
③两函数在区间(-
π
4
π
4
)上都是单调增函数; 
④两函数的最小正周期相同.

查看答案和解析>>

同步练习册答案