精英家教网 > 高中数学 > 题目详情

【题目】长方体ABCD﹣A1B1C1D1中,AA1=2,BC= ,E为CC1的中点.

(1)求证:平面A1BE⊥平面B1CD;
(2)平面A1BE与底面A1B1C1D1所成的锐二面角的大小为θ,当 时,求θ的取值范围.

【答案】
(1)证明:∵CD⊥平面BCC1B1

∴CD⊥BE,

∵E为CC1的中点,

∴△B1BC∽△BCE,

∴∠EBC=∠BB1C,

∴∠EBB1+∠BB1C=90°,

∴BE⊥B1C,

∴B1C∩CD=C,

∴BE⊥平面B1CD,

∵BE平面A1BE,

∴平面A1BE⊥平面B1CD;


(2)解:以D为坐标原点,建立坐标系,设AB=a,则

A1 ,0,2),B( ,a,0),E(0,a,1),

=(0,a,﹣2), =(﹣ ,a,﹣1),

设平面A1BE的法向量为 =(x,y,z),则

∴可取 =( ,1,

∵底面A1B1C1D1的法向量为 =(0,0,1),

∴cosθ= =

<2,


【解析】(1)证明:平面A1BE⊥平面B1CD,只需要证明BE⊥平面B1CD即可;(2)以D为坐标原点,建立坐标系,设AB=a,求出平面A1BE的法向量,底面A1B1C1D1的法向量,利用向量的夹角公式,结合 ,即可求θ的取值范围.
【考点精析】通过灵活运用平面与平面垂直的判定,掌握一个平面过另一个平面的垂线,则这两个平面垂直即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】与圆C:(x﹣2)2+(y+1)2=4相切于点(4,﹣1)且半径为1的圆的方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,AD‖BC,且 ,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设 (M与C不重合).

(1)求证:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角为150°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四点A、B、C、D满足| |=3,| |=7,| |=11,| |=9,则 的取值为(
A.只有一个
B.有二个
C.有四个
D.有无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2|x﹣a|,x∈R.
(1)若函数f(x)为偶函数,求实数a的值;
(2)当x=﹣1时,函数f(x)在x=﹣1取得最大值,求实数a的取值范围.
(3)若函数f(x)有三个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|< ).
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题正确的是(
A.经过空间中的三点,有且只有一个平面
B.空间中,如果两个角的两条边分别对应平行,那么这两个角相等
C.空间中,两条异面直线所成角的范围是(0, ]
D.如果直线l平行于平面α内的无数条直线,则直线l平等于平面α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 满足| |=1,| |=2.
(1)若 的夹角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=2, ;数列{bn}的前n项和为Sn , 且 . (Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)把数列{an}和{bn}的公共项从小到大排成新数列{cn},试写出c1 , c2 , 并证明{cn}为等比数列.

查看答案和解析>>

同步练习册答案