【题目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).
科目:高中数学 来源: 题型:
【题目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并加以说明;
(3)求f( )的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(3﹣ax).
(1)当 时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[2,3]上为增函数,并且f(x)的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.
(1)求角C的值;
(2)若a+b=4,当c取最小值时,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次函数g(x)满足g[g(x)]=9x+8,则g(x)是( )
A.g(x)=9x+8
B.g(x)=3x+8
C.g(x)=﹣3x﹣4
D.g(x)=3x+2或g(x)=﹣3x﹣4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,则函数g(x)=f(x)﹣f′(x)的零点所在的区间是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=ex , 且f(1)=e,则( )
A.f(x)的最小值为e??
B.f(x)的最大值为e
C.f(x)的最小值为 ??
D.f(x)的最大值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com