精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆Γ的左,右焦点分别为F1(0)F2(0),椭圆的左,右顶点分别为AB,已知椭圆Γ上一异于AB的点PPAPB的斜率分别为k1k2,满足.

1)求椭圆Γ的标准方程;

2)若过椭圆Γ左顶点A作两条互相垂直的直线AMAN,分别交椭圆ΓMN两点,问x轴上是否存在一定点Q,使得MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.

【答案】12)存在;定点

【解析】

1)设,根据题意可得,结合椭圆的方程化简可得,再由即可求解.

2)根据设直线的方程分别为,将直线方程与椭圆方程联立求出,设轴上存在一定点,使得成立,则,利用两点求斜率化简即可求得.

解:(1)设

.

椭圆的标准方程为.

2)由(1)可知左顶点,且过点的直线的斜率存在,

设直线的方程分别为

联立

直线和椭圆交于两点,

同理.

轴上存在一定点,使得成立,则

,则

,解得.

因此轴上存在一定点,使得成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥的底面ABCD是边长为a的菱形,ABCDEF分别是CDPC的中点.

1)求证:平面平面PAB

2MPB上的动点,EM与平面PAB所成的最大角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,则其体积为_________,若该圆柱的三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从MN的路径中,最短路径的长度为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 直线与平面 的中点 .

(Ⅰ)若求证平面平面

(Ⅱ)若求直线与平面所成角的正弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展新型冠状病毒防疫安全公益课在线学习,在此之后组织了新型冠状病毒防疫安全知识竞赛在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1234名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用abcd表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X|a1|+|b2|+|c3|+|d4|

1)求该业主获得礼品的概率;

2)求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点坐标是的周长为是坐标原点,点满足.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)设不过原点的直线与曲线交于两点,若直线的斜率依次成等比数列,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB的中点.

1)证明:CF∥平面AEB1

2)若ACBCAA14,∠ACB90°,求三棱锥B1ECF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的导数为

1)若不等式对任意恒成立,求实数的取值范围.

2)若上有且只有一个零点,求的取值范围.

查看答案和解析>>

同步练习册答案