精英家教网 > 高中数学 > 题目详情
1.若x∈R,则下列不等式恒成立的是(  )
A.lg(x2+1)≥lg2xB.2x≤$\frac{{{{(x+1)}^2}}}{2}$C.$\frac{1}{{{x^2}+1}}$<1D.x2+1>2x

分析 A.利用对数函数的性质判断.B.利用基本不等式判断.C.利用分式函数的性质判断.D.利用基本不等式判断.

解答 解:A.因为对数函数的定义域为(0,+∞),故A错误;
B.由(x-1)2≥0得:x2-2x+1+4x≥4x,得:(x+1)2≥4x,得2x≤$\frac{{{{(x+1)}^2}}}{2}$,故B正确;
C.当x=0时,$\frac{1}{{x}^{2}+1}$=1,故C错误;
D.当x=1时,x2+1=2x,故D错误;
故选:B.

点评 本题主要考查不等关系的判断,主要是利用不等式的性质来判断.对于不等式不成立的,可以通过举反例进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对应边分别为a,b,c,已知$\overrightarrow{m}$=(3,2sinA),$\overrightarrow{n}$=(sinA,1+cosA)满足$\overrightarrow{m}$∥$\overrightarrow{n}$,且a=$\sqrt{7}$(c-b).
(Ⅰ)求∠A的值;
(Ⅱ)求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察下列不等式:①$\frac{1}{{\sqrt{3}}}$<1;②$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}<\sqrt{2}$;③$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}+\frac{1}{{\sqrt{12}}}<\sqrt{3}$…,则第5个等式为$\frac{1}{{\sqrt{3}}}+\frac{1}{{\sqrt{6}}}+\frac{1}{{\sqrt{12}}}+\frac{1}{{\sqrt{24}}}+\frac{1}{{\sqrt{48}}}<\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.制造容积为$\frac{π}{2}$立方米的无盖圆柱形桶,用来做底面的金属板的价格为每平方米30元,用来做侧面的金属板的价格为每平方米20元,要使用料成本最低,则此圆柱形桶的底面半径和高分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”. 例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”. 设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.则d2=146;数列{dn}的前n项和Sn=$\left\{\begin{array}{l}{-\frac{3}{2}{n}^{2}+\frac{301}{2}n,}&{1≤n≤50}\\{\frac{3}{2}{n}^{2}-\frac{299}{2}n+7500,}&{51≤n≤100}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%以上的把握认为喜爱打篮球与性别有关?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5个球,其中2个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,则所有不同的排法种数是(  )
A.72B.60C.120D.54

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=3,an+an-1=4n(n≥2)
(Ⅰ)求证:数列{an}的奇数项,偶数项均构成等差数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.当进货单价为40元的商品按50元一个售出时,能卖出500个,设该商品每个涨价1元,其销售量将减少10个,问如何确定每个商品的售价x元能够使得利润y元最大,并求利润的最大值.

查看答案和解析>>

同步练习册答案