精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P.

(1)求椭圆C的离心率;

(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

【答案】见解析

【解析】

解:(1)由椭圆定义知,

2a=|PF1|+|PF2|

=2

所以a=.

又由已知,得c =1,

所以椭圆C的离心率e=.

(2)由(1)知,椭圆C的方程为+y2=1.

设点Q的坐标为(x,y).

①当直线l与x轴垂直时,直线l与椭圆C交于(0,1),(0,-1)两点,此时点Q的坐标为.

②当直线l与x轴不垂直时,设直线l的方程为y=kx+2.

因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则|AM|2=(1+k2)x,|AN|2=(1+k2)x.

又|AQ|2=x2+(y-2)2=(1+k2)x2.

,得

.①

将y=kx+2代入+y2=1中,得

(2k2+1)x2+8kx+6=0.②

由Δ=(8k)2-4×(2k2+1)×6>0,

得k2>.

由②可知,x1+x2,x1x2

代入①中并化简,得x2.③

因为点Q在直线y=kx+2上,所以k=,代入③中并化简,

得10(y-2)2-3x2=18.

由③及k2>,可知0<x2<

即x∈.

又点满足10(y-2)2-3x2=18,故x∈.

由题意知Q(x,y)在椭圆C内,

所以-1≤y≤1.

又由10(y-2)2=18+3x2

(y-2)2,且-1≤y≤1,

则y∈.

所以点Q的轨迹方程为10(y-2)2-3x2=18,

其中x∈,y∈.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程为.

I)当时,判断直线的关系;

II)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求证:EG⊥DF;

(2)求BE与平面EFGH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.

(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和去泰山的概率;

(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知M(x0,y0)是椭圆C:=1上的任一点,从原点O向圆M:(x-x0)2+(y-y0)2=2作两条切线,分别交椭圆于点P,Q.

(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;

(2)试问|OP|2+|OQ|2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-ax+ln(x+1)(a∈R).

(1)当a=2时,求函数f(x)的极值点;

(2)若函数f(x)在区间(0,1)上恒有f′(x)>x,求实数a的取值范围;

(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),证明数列{cn}是单调递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,从a1,a2,a3,a4,a5,a6,a7中取走任意四项,则剩下三项构成等差数列的概率为( )

A. B.

C.1或 D.1或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若在区间上任取三个数,均存在以为边长的三角形,则实数的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知垂直于以为直径的圆所在平面,点在线段上,点为圆上一点,且

(Ⅰ) 求证:

(Ⅱ) 求二面角余弦值.

查看答案和解析>>

同步练习册答案