精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x∈[1+∞)

(1)a=时,求函数f(x)的最小值;

(2)若对任意x∈[1+∞f(x)>0恒成立,试求实数a的取值范围.

 

答案:
解析:

(1)a=时,f(x)=x++2x∈[1+∞)

x2>x1≥1

f(x2)f(x1)=x2+=(x2x1)+ =(x2x1)(1)

x2>x1≥1x2x1>01>0

f(x2)>f(x1)

可知f(x)在[1+∞)上是增函数.

f(x)在区间[1+∞]上的最小值为f(1)=.

(2)在区间[1+∞]上,

f(x)=>0恒成立x2+2x+a>0恒成立

y=x2+2x+ax∈[1+∞)

y=(x+1)2+a1可知其在[1+∞)上是增函数,

x=1时,ymin=3+a

于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.

a>3.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案