精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

【答案】A
【解析】解:将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象, 得g(x)=2cos2(x﹣ )=2cos(2x﹣ ),
,得
当k=0时,函数的增区间为[ ],当k=1时,函数的增区间为[ ].
要使函数g(x)在区间[0, ]和[2a, ]上均单调递增,
,解得a∈[ ].
故选:A.
由函数的图象平移求得函数g(x)的解析式,进一步求出函数(x)的单调增区间,结合函数g(x)在区间[0, ]和[2a, ]上均单调递增列关于a的不等式组求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:

(月份)

1

2

3

4

5

(万盒)

5

5

6

6

8

线性相关,线性回归方程为,则以下为真命题的是( )

A. 每增加1个单位长度,则一定增加0.7个单位长度

B. 每增加1个单位长度,则必减少0.7个单位长度

C. 时,的预测值为8.1万盒

D. 线性回归直线经过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递减等差数列{an}满足:a1=2,a2a3=40. (Ⅰ)求数列{an}的通项公式及前n项和Sn
(Ⅱ)若递减等比数列{bn}满足:b2=a2 , b4=a4 , 求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC-平面ABCDEFG分别为AC的中点AB=BC=AC==2.

求证AC平面BEF

求二面角B-CD-C1的余弦值

证明直线FG与平面BCD相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,ADBC, ABBC, BDDC,点EBC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE, AC, DE,得到如图所示的空间几何体.

  

(1)求证:AB⊥平面ADC

(2)若AD=1,AB,求点B到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函数f(x)在区间[1,+∞)上是减函数,求实数a的取值范围;
(2)设函数g(x)=(3a+1)x﹣(a2+a)x2 , 当x>1时,f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某学校组织的一次篮球总投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第3次.某同学在A处的命中率q1为0.25,在B处的命中率为q2 . 该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮的训练结束后所得的总分,其分布列为

ξ

0

2

3

4

5

P

0.03

P1

P2

P3

P4


(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan , 数列{bn}的前n项和为Sn , 若不等式Sn>kan﹣1对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的33表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元.

1)求概率

2)求的概率分布及数学期望

查看答案和解析>>

同步练习册答案