精英家教网 > 高中数学 > 题目详情

已知定义在区间[0,数学公式]上的函数y=f(x)的图象关于直线x=数学公式对称,当x数学公式时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
A
分析:作函数f(x)的图象,分析函数的图象得到函数的性质,分类讨论后,结合方程在a取某一确定值时所求得的所有解的和记为S,即可得到答案
解答:依题意作出在区间[0,]上的简图,当直线y=a与函数y=f(x)的图象有交点时,则可得-1≤a≤0
①当<a≤0,f(x)=a有2个解,此时S=
②当时,f(x)=a有3个解,此时S==
③当-1<a时,f(x)=a有4个交点,此时S==3π
④a=-1时,f(x)=a有2个交点,此时S==
故选A

点评:本题考查的知识点是函数解析式的求法及函数图象变换法,根的存在性及根的个数的判断,其中根据 y=f(x)的图象关于直线对称.根据对称变换法则,画出出函数的图象是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2-x)的图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2x3

(1)求函数y=f(x)的最小值m(a)及g(x)的值域;
(2)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)已知定义在区间[0,
2
]上的函数y=f(x)的图象关于直线x=
4
对称,当x
4
时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

填空题
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,则sin2x的值为
1
9
1
9

(2)已知定义在区间[0,
2
]
上的函数y=f(x)的图象关于直线x=
4
对称,当x≥
4
时,f(x)=cosx,如果关于x的方程f(x)=a有四个不同的解,则实数a的取值范围为
(-1,-
2
2
)
(-1,-
2
2
)


(3)设向量
a
b
c
满足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2xx+1

(1)求函数y=f(x)的最小值m(a)及g(x)的值域;
(2)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案