精英家教网 > 高中数学 > 题目详情

M1(0,0),M2(1,0),以M1为圆心,| M1 M2 | 为半径作圆交x轴于点M3 (不同于M2),记作⊙M1;以M2为圆心,| M2 M3 | 为半径作圆交x轴于点M4 (不同于M3),记作⊙M2;……;以Mn为圆心,| Mn Mn+1 | 为半径作圆交x轴于点Mn+2 (不同于Mn+1),记作⊙Mn;……当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于AnBn.考察下列论断:

n=1时,;Ks当n=2时,;当n=3时,

n=4时,              ;当n=5时, ;……,

则推测一个一般的结论:对于n∈N*,               

【解析】,由归纳猜想得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二项式(x-
m
x
)6
展开式中不含x的项为-160;设f1(x)=
m
1+x
,定义fn+1(x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
,其中n∈N*
(Ⅰ)求m的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若T2n=a1+2a2+3a3+…+2na2nQn=
4n2+n
4n2+4n+1
,其中n∈N*,试比较9T2n与Qn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)已知圆O:x2+y2=4.
(1)直线l1
3
x+y-2
3
=0
与圆O相交于A、B两点,求|AB|;
(2)如图,设M(x1,y1)、P(x2,y2)是圆O上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:上海市奉贤区2011届高三12月调研测试数学理科试题 题型:044

设h(x)=,x∈[,5],其中m是不等于零的常数,

(1)写出h(4x)的定义域;

(2)求h(x)的单调递增区间;

(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,设,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;

查看答案和解析>>

科目:高中数学 来源:2013年上海市虹口区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

已知圆O:x2+y2=4.
(1)直线l1与圆O相交于A、B两点,求|AB|;
(2)如图,设M(x1,y1)、P(x2,y2)是圆O上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案