精英家教网 > 高中数学 > 题目详情
16.如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E、F分别为PD、AC上的动点,且$\frac{DE}{DP}$=$\frac{CF}{CA}$=λ(0<λ<1).
(Ⅰ)当λ=$\frac{1}{2}$时,求证:AD⊥EF;
(Ⅱ)求三棱锥E-FAD的体积的最大值.

分析 (Ⅰ)当λ=$\frac{1}{2}$时,E、F分别为PD、AC的中点,取AD中点H,连接EH、FH,则:EH∥PA,证明AD⊥面EFH.由此能证明AD⊥EF;
(Ⅱ)在平面PAD内作EH⊥AD于H,则EH⊥平面ADC,EH∥PAEH=λPA=λ.S△FAD=$\frac{1-λ}{2}$,由此能求出三棱锥E-FAD体积最大值.

解答 (Ⅰ)证明:当λ=$\frac{1}{2}$时,E、F分别为PD、AC的中点,
取AD中点H,连接EH、FH,则:EH∥PA
而PA⊥底面ABCD,
∴EH⊥平面ADC,且AD?面ABCD
∴EH⊥AD…?…(2分)
又FH∥CD且ABCD为正方形
∴FH⊥AD …?…(4分)
∵EH∩FH=H,
∴AD⊥面EFH
而EF?面EFH
∴AD⊥EF;                …(6分)
(Ⅱ)解:在平面PAD内作EH⊥AD于H,
因为侧棱PA⊥底面ABCD,
所以平面PAD⊥底面ABCD,且平面PAD∩底面ABCD=AD,
所以EH⊥平面ADC,所以EH∥PA.
因为$\frac{DE}{DP}$=λ(0<λ<1),所以$\frac{EH}{PA}$=λ,EH=λPA=λ.
∵$\frac{{S}_{△FAD}}{{S}_{△ADC}}$=$\frac{AF}{AC}$=1-λ,∴S△FAD=$\frac{1-λ}{2}$           …(10分)
∴VE-FAD=$\frac{1}{3}λ•\frac{1-λ}{2}$=$\frac{λ-{λ}^{2}}{6}$(0<λ<1)
∴三棱锥E-FAD的体积的最大值为$\frac{1}{24}$.…(13分)

点评 本题考查直线与平面垂直的证明,考查三棱锥的体积的最大值的求法,考查学生分析解决问题的能力,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知两圆C1:(x+5)2+y2=4,C2:(x-5)2+y2=4,动圆C与圆C1外切,而与圆C2内切,求动圆圆心C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:如图,点I是△ABC的内心,延长AI交△ABC的外接圆于点D,求证:点D是△BCI的外心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点为F1,F2,右顶点为A,上顶点为B.已知|AB|=$\frac{\sqrt{3}}{2}$|F1F2|.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,是否存在经过原点的直线l与该圆相切,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.
(1)求证:AC•BC=AD•AE;
(2)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线x2-y2=2的右准线方程为x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线y=kx+2与曲线$f(x)=|{x+\frac{1}{x}}|-|{x-\frac{1}{x}}|$恰有两个不同的交点,则实数k的取值构成集合是$\{0,\frac{1}{2},-\frac{1}{2}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为6,点A为左顶点,B,C在椭圆E上,若四边形OABC位平行四边形,且∠OAB=30°.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点M(1,0)作倾斜角为135°的直线l,交椭圆于P,Q两点,设点F是椭圆的左焦点,求△FPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,求$\frac{BD}{DA}$.

查看答案和解析>>

同步练习册答案