【题目】的内角A,B,C的对边分别为a,b,c,已知.
(1)求C;
(2)若,的面积为,求的周长;
(3)若,求周长的取值范围;
(4)若,求面积的取值范围.
【答案】(1);(2);(3);(4)
【解析】
(1)由正弦定理和三角恒等变换求得以及的值;
(2)由三角形的面积公式和余弦定理,即可求出的周长;
(3)利用正弦定理和三角恒等变换,结合三角函数的图象与性质,即可求出周长的取值范围;
(4)利用余弦定理和基本不等式求得面积的最大值,即可得出面积的取值范围.
(1)中,,
由正弦定理可得:,
即,
又,,
∴,求得.
(2)由的面积为,
即,
∵,∴,
由,利用余弦定理,可得,
即,∴,
即的周长为.
(3)∵,,
由正弦定理得,,
∴的周长为,
又,∴,
则
,
∵,∴,
∴,,
即,
∴周长的取值范围是.
(4)由,,
利用余弦定理可得:,
可得,当且仅当时取等号,
∴面积的最大值为,
∴面积的取值范围是.
科目:高中数学 来源: 题型:
【题目】为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为:,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.
(1)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)计算:
①若是椭圆长轴的两个端点,,则______;
②若是椭圆长轴的两个端点,,则______;
③若是椭圆长轴的两个端点,,则______.
(Ⅱ)观察①②③,由此可得到:若是椭圆长轴的两个端点,为椭圆上任意一点,则?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,、是两个小区所在地,、到一条公路的垂直距离分别为,,两端之间的距离为.
(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对、的张角与对、的张角相等,试确定点的位置.
(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对、所张角最大,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f()=1,当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店经营的消费品进价每件14元,月销售量(百件)与销售价格p(元)的关系如下图,每月各种开支2000元.
(1)写出月销售量(百件)与销售价格p(元)的函数关系;
(2)写出月利润y(元)与销售价格p(元)的函数关系:
(3)当商品价格每件为多少元时,月利润最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码t | 1 | 2 | 3 | 4 | 5 | 6 |
年产量y(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根据表中数据,建立关于的线性回归方程;
(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据:,计算结果保留小数点后两位)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com