精英家教网 > 高中数学 > 题目详情
8.如图,正方形ABCD和菱形ACEF所在平面互相垂直,∠ACE=60°.四棱锥E-ABCD的体积是36$\sqrt{6}$.
(Ⅰ)求证:DE∥平面ABF
(Ⅱ)求四面体ABEF的体积.

分析 (Ⅰ)推导出AB∥DC,AF∥CE,从而平面ABF∥平面CDE,由此能证明DE∥平面ABF.
(Ⅱ)连结AC、BD,相交于点O,连结EO,推导出EO⊥平面ABCD,BO⊥平面ACEF,四面体ABEF在面AEF上的高BO=3$\sqrt{3}$,由此能求出四面体ABEF的体积.

解答 证明:(Ⅰ)∵四边形ABCD是正方形,四边形ACEF是菱形,
∴AB∥DC,AF∥CE,且AB∩AF=A,CD∩CE=C,
∴平面ABF∥平面CDE,
∵DE?平面CDE,∴DE∥平面ABF.
解:(Ⅱ)连结AC、BD,相交于点O,连结EO,则O为AC的中点,
∵四边形ACEF是菱形,∠ACE=60°,∴△ACE是正三角形,
∴EO⊥AC,
∵平面ABCD⊥平面ACEF,交线为AC,
∴EO⊥平面ABCD,
同理,得BO⊥平面ACEF,
设正方形ABCD的边长为a,则AC=BD=$\sqrt{2}a$,BO=$\frac{\sqrt{6}}{2}a$,
∴VE-ABCD=$\frac{1}{3}{a}^{2}×\frac{\sqrt{6}}{2}a=\frac{\sqrt{6}}{6}{a}^{3}=36\sqrt{6}$,解得a=6,
∴${S}_{△AEF}=\frac{1}{2}×(\sqrt{2}a)^{2}×sin60°=18\sqrt{3}$,
四面体ABEF在面AEF上的高BO=3$\sqrt{3}$,
∴四面体ABEF的体积${V}_{B-AEF}=\frac{1}{3}×18\sqrt{3}×3\sqrt{2}$=18$\sqrt{6}$.

点评 本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a=ln$\frac{1}{2}$,b=sin$\frac{1}{2}$,c=2${\;}^{-\frac{1}{2}}$,则a,b,c按照从小到大排列为(  )
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x0∈R,x0-2>lgx0,命题q:?x∈R,x2>0,则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一笔投资的回报方案为:第一天回报0.5元,以后每天的回报翻一番,则投资第x天与当天的投资回报y之间的函数关系为(  )
A.y=0.5x2,x∈N*B.y=2x,x∈N*C.y=2x-1,x∈N*D.y=2x-2,x∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量|$\overrightarrow{e}$|=1,向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$$•\overrightarrow{e}$=1,$\overrightarrow{b}$$•\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则$\overrightarrow{a}$$•\overrightarrow{b}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C经过三点O(0,0),A(1,3),B(4,0).
(Ⅰ)求圆C的方程;
(Ⅱ)求过点P(3,6)且被圆C截得弦长为4的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(0<p<4)的焦点为F,点P为C上一动点,A(4,0),B(p,$\sqrt{2}$p),且|PA|的最小值为$\sqrt{15}$,则|BF|等于(  )
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-x2+x.
(1)求函数f(x)的单调区间;
(2)证明当a≥2时,关于x的不等式$f(x)<({\frac{a}{2}-1}){x^2}+ax-1$恒成立;
(3)若正实数x1,x2满足$f({x_1})+f({x_2})+2({x_1^2+x_2^2})+{x_1}{x_2}=0$,证明${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知幂函数f(x)=(m3-m+1)x${\;}^{\frac{1}{2}(1-8m-{m}^{2})}$(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称
(1)求f(x)的解析式;
(2)解不等式f(x+1)>f(x-2)

查看答案和解析>>

同步练习册答案