分析 (Ⅰ)推导出AB∥DC,AF∥CE,从而平面ABF∥平面CDE,由此能证明DE∥平面ABF.
(Ⅱ)连结AC、BD,相交于点O,连结EO,推导出EO⊥平面ABCD,BO⊥平面ACEF,四面体ABEF在面AEF上的高BO=3$\sqrt{3}$,由此能求出四面体ABEF的体积.
解答 证明:(Ⅰ)∵四边形ABCD是正方形,四边形ACEF是菱形,
∴AB∥DC,AF∥CE,且AB∩AF=A,CD∩CE=C,
∴平面ABF∥平面CDE,
∵DE?平面CDE,∴DE∥平面ABF.
解:(Ⅱ)连结AC、BD,相交于点O,连结EO,则O为AC的中点,
∵四边形ACEF是菱形,∠ACE=60°,∴△ACE是正三角形,
∴EO⊥AC,
∵平面ABCD⊥平面ACEF,交线为AC,
∴EO⊥平面ABCD,
同理,得BO⊥平面ACEF,
设正方形ABCD的边长为a,则AC=BD=$\sqrt{2}a$,BO=$\frac{\sqrt{6}}{2}a$,
∴VE-ABCD=$\frac{1}{3}{a}^{2}×\frac{\sqrt{6}}{2}a=\frac{\sqrt{6}}{6}{a}^{3}=36\sqrt{6}$,解得a=6,
∴${S}_{△AEF}=\frac{1}{2}×(\sqrt{2}a)^{2}×sin60°=18\sqrt{3}$,
四面体ABEF在面AEF上的高BO=3$\sqrt{3}$,
∴四面体ABEF的体积${V}_{B-AEF}=\frac{1}{3}×18\sqrt{3}×3\sqrt{2}$=18$\sqrt{6}$.
点评 本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | b<a<c | B. | a<b<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题p∨q是假命题 | B. | 命题p∧q是真命题 | ||
C. | 命题p∧(¬q)是真命题 | D. | 命题p∨(¬q)是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=0.5x2,x∈N* | B. | y=2x,x∈N* | C. | y=2x-1,x∈N* | D. | y=2x-2,x∈N* |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | $\frac{9}{2}$ | C. | 5 | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com