精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠BAC=
π
3
且BC=
3
.若E为BC的中点,则AE的最大值是
 
考点:正弦定理
专题:综合题,解三角形
分析:求出△ABC的外接圆的直径为
3
sin
π
3
=2,利用E为BC的中点,可得AE⊥BC时,AE取得最大值.
解答: 解:∵△ABC中,∠BAC=
π
3
且BC=
3

∴由正弦定理可得:△ABC的外接圆的直径为
3
sin
π
3
=2,
∵E为BC的中点,
∴AE⊥BC时,AE的最大值是1+
12-(
3
2
)2
=1+
1
2
=
3
2

故答案为:
3
2
点评:本题考查正弦定理的运用,考查学生分析解决问题的能力,求出△ABC的外接圆的直径是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R},若A∩B=[1,3],求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2+2x+(2-a)lnx
(1)当a=-2时,求f(x)的最大值
(2)若在函数f(x)的定义域内存在区间D,使得该函数在区间D上为减函数,求a的取值范围
(3)若曲线C:y=f(x)在点x=1处的切线l与C有且只有一个公共点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x
1-x
在(  )
A、(-∞,1)∪(1,+∞)上是增函数
B、(-∞,1)∪(1,+∞)上是减函数
C、(-∞,1),(1,+∞)分别是增函数
D、(-∞,1),(1,+∞)分别是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b为空间两条直线,α,β为空间两个平面,则下列命题中真命题的是(  )
A、若a不平行α,则在α内不存在b,使得b平行a
B、若a不垂直α,则在α内不存在b,使得b垂直a
C、若α不平行β,则在β内不存在a,使得a平行α
D、若α不垂直β,则在β内不存在a,使得a垂直α

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图输出的结果是(  )
A、8B、6C、5D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,输出的y等于(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若α是第二象限角,sin(π-α)=
10
10
.求
2sin2
α
2
+8sin
α
2
cos
α
2
+8cos2
α
2
-5
2
sin(α-
π
4
)
 的值;
(2)已知函数f(x)=tan(2x+
π
4
),设α∈(0,
π
4
),若f(
α
2
)=2cos2α,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,R、S分别是棱AB、PC的中点,AD∥BC,AD⊥AB,PA⊥PB,AB=BC=2AD=2PA=2,
(Ⅰ)求证:平面PAD⊥平面PBC;
(Ⅱ)求证:RS∥平面PAD
(Ⅲ)若点Q在线段AB上,且CD⊥平面PDQ,求三棱锥Q-PCD的体积.

查看答案和解析>>

同步练习册答案