精英家教网 > 高中数学 > 题目详情
3.定义在R上的偶函数f(x)在(0,+∞)上单凋递减.则f(3),f(-4),f(-π)的大小关系是f(3)<f(-π)<f(-4).

分析 由题意,f(-4)=f(4),f(-π)=f(π),利用函数f(x)在(0,+∞)上单凋递减,3<π<4,可得f(3)<f(π)<f(4),即可得出结论.

解答 解:由题意,f(-4)=f(4),f(-π)=f(π),
∵函数f(x)在(0,+∞)上单凋递减,3<π<4
∴f(3)<f(π)<f(4),
∴f(3)<f(-π)<f(-4),
故答案为:f(3)<f(-π)<f(-4).

点评 本题考查的奇偶性,单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设方程x2-x-3=0的两个根为α,β,求做一个方程,使得它的两个根为α3,-β3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$是夹角为60°的单位向量,且($\overrightarrow{c}$-3$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)≤0,则|$\overrightarrow{c}$|的取值范围是[$\frac{\sqrt{13}-\sqrt{7}}{2}$,$\frac{\sqrt{13}+\sqrt{7}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,∠A=60°,∠B=75°,c=5$\sqrt{2}$.
(1)求∠C的度数;
(2)求∠A的对边a的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在非零实数集上的函数f(x)满足f(xy)=f(x)+f(y),则函数f(x)的奇偶性是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.两单位向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,试向量$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{d}$=3$\overrightarrow{b}$-$\overrightarrow{a}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{π}{2}$<α<π,tanα-$\frac{1}{tanα}$=-$\frac{3}{2}$.
(1)求tanα的值;
(2)求$\frac{cos(\frac{3π}{2}+α)-cos(π-α)}{sin(\frac{π}{2}-α)}$的值;
(3)求2sin2α-sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\overrightarrow{AC}$-$\overrightarrow{BC}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow{0}$C.$\overrightarrow{BA}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)由圆x2+y2=4上任意一点向x轴作垂线,求垂线夹在圆周和x轴间的线段中点的轨迹方程;
(2)两根杆分别绕着定点A和B(AB=2a)在平面内转动,并且转动时两杆保持互相垂直,求杆的交点P的轨迹方程.

查看答案和解析>>

同步练习册答案