A. | -2 | B. | -1 | C. | 2 | D. | 1 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式$\left\{\begin{array}{l}x-3y+1≤0\\ x+y-3≤0\\ x-1≥0\end{array}\right.$对应的平面区域(阴影部分),
由z=y-x,得y=x+z,
平移直线y=x+z,由图象可知当直线y=x+z经过点B时,直线y=x+Z的截距最大,此时z最大.
由$\left\{\begin{array}{l}x+y-3=0\\ x-1=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,
即B(1,2).
此时z的最大值为:z=2-1=1,
故选:D.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[-\frac{3π}{4},\frac{π}{4}]$ | B. | $[-\frac{π}{4},\frac{3π}{4}]$ | C. | $[-\frac{3π}{8},\frac{π}{8}]$ | D. | $[-\frac{π}{8},\frac{3π}{8}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (-1,+∞) | C. | (0,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{7}{5}$ | B. | -$\frac{11}{5}$ | C. | $\frac{11}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com