精英家教网 > 高中数学 > 题目详情
5.设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立,a,b满足不等式组$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f({b}^{2}-8b)≤0}\\{f(b+1)>f(5)}\end{array}\right.$,那么a2+b2的取值范围是(  )
A.(17,49]B.[9,49]C.(17,41]D.[9,41]

分析 由f(1-x)+f(1+x)=0恒成立,可将不等式可化为f(a2-6a+23)≤f(2-b2+8b),利用f(x)的单调性,可化为关于m的整式不等式(a-3)2+(b-4)2≤4,分析(a-3)2+(b-4)2≤4的几何意义,即可求得a2+n2 的取值范围.

解答 解:∵对于任意的x都有f(1-x)+f(1+x)=0恒成立
∴f(1-x)=-f(1+x)
∵f(a2-6a+23)+f(b2-8b)≤0,
∴f(a2-6a+23)≤-f[(1+(b2-8b-1)],
∴f(a2-6a+23)≤f[(1-(b2-8b-1)]=f(2-b2+8b),
∵f(x)是定义在R上的增函数,
∴a2-6a+23≤2-b2+8b,
∴(a-3)2+(b-4)2≤4(b>4)
∵(m-3)2+(n-4)2=4的圆心坐标为:(3,4),半径为2,

∴(m-3)2+(n-4)2=4(b>4)内的点到原点距离的取值范围为($\sqrt{{1}^{2}+{4}^{2}}$,5+2],即($\sqrt{17}$,7],
∵m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方,
∴m2+n2 的取值范围是(17,49].
故选:A

点评 本题考查函数的奇偶性与单调性,考查不等式的含义,解题的关键是确定半圆内的点到原点距离的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-b(a>0且a≠1).
(1)若f(x)的图象过点(2,2)和(4,14),求f(a-b);
(2)若f(x)的图象经过第二、三、四象限,求ab的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.己知f(x)是定义在R上的奇函数,当x>0时f(x)=x2-4x+3,则不等式f(x)≥0的解集用区间表示为[-3,-1]∪[0,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB=$\frac{3}{2}$,且a、b、c成等比数列.
(Ⅰ)求角B的大小;
(Ⅱ)若$\frac{a}{tanA}$+$\frac{c}{tanC}$=$\frac{2b}{tanB}$,a=2,判断三角形形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2+(a-3)x+1在区间[-1,+∞)上是递增的,则实数a的取值范围是(  )
A.[-3,0)B.(-∞,-3]C.[5,+∞)D.(0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.y=ax(a>0,a≠1)是减函数,则a的取值范围是(0,1);则函数f(x)=loga(x2+2x-3)的增区间是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn满足(p-1)Sn=p2-an(p>0,p≠1),且a3=$\frac{1}{3}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,数列{bnbn+2}的前n项和为Tn,若对于任意的正整数n,都有Tn<m2-m+$\frac{3}{4}$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出与下列各角终边相同的角的集合S,并把S中在-360°~720°间的角写出来.
(1)70°;    (2)-53°;   (3)480°16′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设不等式组$\left\{\begin{array}{l}{x>0}\\{y>0}\\{y≤3n-nx(n∈N*)}\end{array}\right.$所表示的平面区域Dn,记Dn内的整点个数为an,(整点即横坐标和纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,bk=${C}_{n}^{k}$ak(k=1,2,3,…,n),Tn=$\sum_{k=1}^{n}$bk,若对于一切正整数n,$\frac{n{S}_{n}}{{T}_{n}}$≤m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案