精英家教网 > 高中数学 > 题目详情
(2012•衡阳模拟)已知f(x)是奇函数,且对定义域内任意自变量x满足f(2-x)=f(x).当x∈(0,1]时,f(x)=lnx,则当x∈[-1,0)时f(x)=
-ln(-x)
-ln(-x)
;当x∈(4k,4k+1],k∈Z时,f(x)=
ln(x-4k).
ln(x-4k).
分析:要求x∈[-1,0)时f(x)的解析式,需将自变量x定义在[-1,0),再利用-x∈(0,1],转化到已知条件上,利用函数的奇偶性与周期性即可解决问题.
解答:解:∵x∈[-1,0),
∴-x∈(0,1],
∴f(-x)=ln(-x),
∵f(-x)=-f(x),
∴f(x)=-ln(-x),
∵f(-x)=-f(x),f(2-x)=f(x),
∴f(x+4)=f(x),
∵x∈(4k,4k+1],k∈Z,
∴x-4k∈(0,1],
∴f(x-4k)=ln(x-4k).
∴f(x)=ln(x-4k).
故答案为:-ln(-x),ln(x-4k).
点评:本题考查分段函数的解析式求法,着重考查函数的奇偶性与周期性的应用,考查转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•衡阳模拟)x(x-
2x
7的展开式中,x4的系数是
84
84

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)求三棱锥的体积VF-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知集合A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)命题p:m>7,命题q:f (x)=x2+mx+9(m∈R)有零点,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)若等差数列{an}的前5项的和S5=25,且a2=3,则a4=(  )

查看答案和解析>>

同步练习册答案