【题目】如图,在四面体中,,.
(Ⅰ)求证:;
(Ⅱ)若与平面所成的角为,点是的中点,求二面角的大小.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】分析:(Ⅰ)由勾股定理可得, 则,,进一步可得, 则.
(Ⅱ)结合(Ⅰ)的结论和几何关系,以B为原点,建立空间直角坐标系,则平面BDE的法向量为,且是平面CBD的一个法向量.结合空间向量计算可得二面角的大小为.
详解:(Ⅰ)由已知得,
,
又,,
,
,
又,,
,
.
(Ⅱ)由(Ⅰ)知,AB与平面BCD所成的角为,即,
设BD=2,则BC=2,在中,AB=4,
由(Ⅰ)中,得平面ABC⊥平面ABD,在平面ABD内,过点B作,则平面ABC,以B为原点,建立空间直角坐标系,
则,,,
,由,
,
得,
∴,,
设平面BDE的法向量为,
则,取,解得,
∴是平面BDE的一个法向量,
又是平面CBD的一个法向量.
设二面角的大小为,易知为锐角,
则,
∴,即二面角的大小为.
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱的各条棱长均相等, 为的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )
A. 平面平面 B. 三棱锥的体积为定值
C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:
(1)完成如下列联表,并判断是否有99%的把握认为,了解阿基米德与选择文理科有关?
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.参考数据:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位从一所学校招收某类特殊人才,对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
例如,表中运动协调能力良好且逻辑思维能力一般的学生有人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为.
(Ⅰ)求的值;
(Ⅱ)从参加测试的位学生中任意抽取位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;
(III)从参加测试的位学生中任意抽取位,设运动协调能力或逻辑思维能力优秀的学生人数为,求随机变量的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为也为抛物线的焦点,点为在第一象限的交点,且.
(I)求椭圆的方程;
(II)延长,交椭圆于点,交抛物线于点,求三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线与直线交于不同两点分别过点、点作抛物线的切线,所得的两条切线相交于点.
(Ⅰ)求证为定值:
(Ⅱ)求的面积的最小值及此时的直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com