精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若关于的方程有且只有一个实数根,求实数的取值范围;

2)若函数的图象总在函数图象的下方,求实数的取值范围.

【答案】1;(2.

【解析】

1)由得出,可得出,令,将问题转化为直线与函数的图象只有一个交点,利用导数分析函数的单调性和极值,利用数形结合思想可求得实数的取值范围;

2)由题意可知不等式对任意的恒成立,令,对实数进行分类讨论,分析函数在区间上的单调性,结合可求得实数的取值范围.

1)令,得

,则直线与函数的图象只有一个交点,

函数的定义域为

,得,列表如下:

极大值

所以,函数处取得极大值,即,如下图所示:

由上图可知,当时,即当时,直线与函数的图象只有一个交点,

因此,实数的取值范围是

2)令,根据题意知,当时,恒成立.

.

①若对任意的恒成立,此时,函数在区间上单调递减,

所以,,得,此时

②若,当时,;当时,.

所以,函数在区间上单调递减,在区间上单调递增.

时,,不合乎题意;

③若,对任意的,则函数在区间上单调递增.

时,,不合乎题意.

综上,所求实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】7届世界军人运动会于20191018日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:

组别

频数

5

30

40

50

45

20

10

1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.

(参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】离心率为的椭圆经过点是坐标原点.

1)求椭圆的方程;

2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程,并求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.

图:设备改造前样本的频率分布直方图

表:设备改造后样本的频率分布表

质量指标值

频数

2

18

48

14

16

2

1)求图中实数的值;

2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形,边的中点,点在线段.

1)证明:平面平面

2)若平面,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.

1)求这300名员工日行步数(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);

2)由直方图可以认为该企业员工的日行步数(单位:千步)服从正态分布,其中为样本平均数,标准差的近似值为2,求该企业被抽取的300名员工中日行步数的人数;

3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200.求工会慰问奖励金额(单位:元)的分布列和数学期望.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三陵锥中,为等腰直角三角形,为正三角形,的中点.

1)证明:平面平面

2)若二面角的平面角为锐角,且棱锥的体积为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案