分析:(I)由且
an+1=,n∈N
*,求解可得a
2=a+
,a
3=
(a+
).
(II)由记
bn=a2n-1-,可推知b
n=a
2n-1-
=
(a
2n-3+
)-
=
(a
2n-3-
)=
b
n-1,又因为b
1=a
1-
=a-
≠0由等比数列的定义可知数列{b
n}为等比数列.
(III)当a>
时,{b
n}为正项等比数列,可由b
n+1+b
n+2+b
n+…+b
n+m=b
n+1<2b
n+1=b
n,当n≥4时,s
n-s
3=-b
4-b
5+…+
bn,从而有s
n-s
3<b2-b3-b4-…-bn<0同理,可得s
n-s
1=b
2+b
3-b
4-b
5+…+
bn>0,可推知:当n≥4,s
1<s
n<s
3,s
1<s
2<s
3从而得到结论.
解答:解:(I)a
2=a+
,a
3=
(a+
)
(II)∵b
n=a
2n-1-
=
(a
2n-3+
)-
=
(a
2n-3-
)=
b
n-1∵b
1=a
1-
=a-
≠0
∴
{bn}\为的等比数列
(III)当a>
时,
∵{b
n}为正项等比数列,
∴b
n+1+b
n+2+b
n+…+b
n+m=b
n+1<2b
n+1=b
n当n≥4时,s
n-s
3=-b
4-b
5+…+
bn<b2-b3-b4-…-bn<0
s
n-s
1=b
2+b
3-b
4-b
5+…+
bn>b2-b3-b4-…-bn>0
当n≥4,s
1<s
n<s
3,s
1<s
2<s
3故s
n的最大值为s
3=
(a+
),最小值为s
1=a+
点评:本题主要考查数列的定义,通项及前n项和,还考查了数列的构造及前n项和的最值问题.难度较大.