精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为(  )
A.B.-$\frac{π}{2}$C.$\frac{π}{4}$D.

分析 由函数的奇偶性可得φ的取值范围,结合选项验证可得.

解答 解:∵函数f(x)=sin(x+φ)是偶函数,
∴f(-x)=f(x),即sin(-x+φ)=sin(x+φ),
∴(-x+φ)=x+φ+2kπ或-x+φ+x+φ=π+2kπ,k∈Z,
当(-x+φ)=x+φ+2kπ时,可得x=-kπ,不满足函数定义;
当-x+φ+x+φ=π+2kπ时,φ=kπ+$\frac{π}{2}$,k∈Z,
结合选项可得B为正确答案.
故选:B.

点评 本题考查正弦函数图象,涉及函数的奇偶性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合A={x|1<2x-1<5},B={y|y=($\frac{1}{2}$)x,x≥-2}.
(1)求(∁UA)∩B;
(2)若集合C={x|a-1<x-a<1},且C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x+1,则关于x的不等式f(2x+1)+f(x+1)>2的解集为(  )
A.(-$\frac{1}{2017}$,+∞)B.(-2017,+∞)C.(-$\frac{2}{3}$,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设实数x,y满足$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则$\frac{y-1}{x+3}$的取值范围是(  )
A.(-∞,$\frac{1}{5}$]B.[-$\frac{1}{5}$,1]C.(-$\frac{1}{5}$,$\frac{1}{3}$]D.($\frac{1}{3}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,且其外接圆的半径R=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>b>0,a+b=1,x=-($\frac{1}{a}$)b,y=logab($\frac{1}{a}$+$\frac{1}{b}$),z=logba,则(  )
A.y<xzB.x<z<yC.z<y<xD.x<y<z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.据调查分析,若干年内某产品关税与市场供应量P的关系近似地满足:y=P(x)=2${\;}^{(1-kt)(x-b)^{2}}$,(其中,t为关税的税率,且t∈[0,$\frac{1}{2}$),x为市场价格,b,k为正常数),当t=$\frac{1}{8}$时的市场供应量曲线如图.
(Ⅰ)根据图象求b,k的值;
(Ⅱ)若市场需求量为Q(x)=2${\;}^{11-\frac{t}{2}}$,当p=Q时的市场价格称为市场平衡价格,当市场平衡价格保持在10元时,求税率t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足${a_1}=\frac{1}{3},{a_{n+1}}={a_n}+\frac{a_n^2}{n^2}(n∈{N^*})$.
(1)证明:${a_n}<{a_{n+1}}<1(n∈{N^*})$;
(2)证明:${a_n}≥\frac{n}{2n+1}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(1,0,1),$\overrightarrow{b}$=(0,1,1),向量$\overrightarrow{a}$-k$\overrightarrow{b}$与$\overrightarrow{a}$垂直,k为实数.
(I)求实数k的值;
(II)记$\overrightarrow{c}$=k$\overrightarrow{a}$,求向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{c}$-$\overrightarrow{b}$的夹角.

查看答案和解析>>

同步练习册答案