精英家教网 > 高中数学 > 题目详情

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
①求数列的通项
②若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

(1)①
②当时,;当时,;当时,
(2)

解析试题分析:(1) 解等差数列问题,主要从待定系数对应关系出发.①从关系出发,得出,利用解出,从而解出首项与公差,② 实际是一个等比数列,分别求出数列 前项和项和 ,要使计算简便,需用 表示 ,比较两者大小通常用作差法. 作差法的关键是因式分解,将差分解为因子,根据因子的符号讨论差的正负,从而确定大小,(2) 不等式恒成立问题,首先化简不等式. 需从关系出发,得出项的关系:,这是三项之间的关系,需继续化简成两项之间关系:,这样原数列分解为三个等差数列,则恒成立等价转化为,代入可解得
试题解析:解:(1)因为,所以
,又,所以,    2分
①又因为数列成等差数列,所以,即,解得
所以;        4分
②因为,所以,其前项和
又因为,   5分
所以其前项和,所以, 7分
时,;当时,
时,    9分
(2)由
两式作差,得,   10分
所以,作差得,  11分
所以,当时,
时,
时,
时,;      14分
因为对任意恒成立,所以
所以,解得,,故实数的取值范围为. 16分
考点:等差数列通项,等比数列求和,不等式恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn.
(1)求数列{an}的通项公式.
(2)设数列{bn}满足bn=,其前n项和为Tn,求证:Tn<(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知n∈N*,数列{dn}满足dn,数列{an}满足and1d2d3+…+d2n,又知在数列{bn}中,b1=2,且对任意正整数mn.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2 013项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列{an}中,a16a17a18a9=-36,其前n项和为Sn.
(1)求Sn的最小值,并求出Sn取最小值时n的值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是公差不为零的等差数列,,且的等比中项.
(1)求数列的通项公式;
(2)设数列的前项和为,试问当为何值时,最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,已知.
(1)求
(2)若从中抽取一个公比为的等比数列,其中,且.
①当取最小值时,求的通项公式;
②若关于的不等式有解,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.
(1)求数列的通项公式:
(2)设,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为常数,),且数列是首项为4,公差为2的等差数列。
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,当时,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在等比数列中,,且的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求的前项和

查看答案和解析>>

同步练习册答案