精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn-1(n∈N*
(1)证明:an+2-an=4.
(2)求数列{an}的通项公式.

分析 (1)由anan+1=4Sn-1,可得当n≥2时,an-1an=4Sn-1-1,an≠0,两式相减可得an+1-an-1=4;
(2)由(1)可得数列{an}的奇数项与偶数项分别为等差数列,进而得出数列{an}的通项公式.

解答 (1)证明:∵anan+1=4Sn-1,∴当n≥2时,an-1an=4Sn-1-1,anan+1-an-1an+1=4an
∵an≠0,∴an+1-an-1=4,
(2)解:当n=1时,a1a2=4a1-1,
∵a1=1,解得a2=3,
由an+1-an-1=4,可知数列{an}的奇数项与偶数项分别为等差数列,公差为4,首项分别为1,3.
∴当n=2k-1(k∈N*)时,an=a2k-1=1+4(k-1)=4k-3=2n-1;
当n=2k(k∈N*)时,an=a2k=3+4(k-1)=2n-1.
∴an=2n-1.

点评 本题考查了递推式的应用、等差数列的定义及其通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数列{an}为等比数列,若a4+a7=2,a3a8=-8,则a1+a10 =(  )
A.-7B.5C.-5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用列举法表示下列集合.
(1)平方等于1的实数全体;
(2)一年中有31天的月份的全体;
(3)方程x2=4的解集;
(8)你本学期所学习的课程全体.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A={x|-2<x<1或x>4},B={x|a≤x≤b},A∪B={x|x>-2},A∩B={x|0≤x<1},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用列举法表示下列集合.
(1)A={x|x=|x|,x∈Z,且x<8};
(2)B={x|x=$\frac{|a|}{a}$+$\frac{|b|}{b}$,a,b为非零实数};
(3)C={x|$\frac{6}{3-x}$∈Z,x∈N*}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求过点(2,-3),倾斜角的余弦为$\frac{3}{5}$的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合{x∈R|x2+αx+b=0,α,b∈R}=∅,则α、b应满足条件a2-4b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足$\frac{{y}_{n}}{lo{g}_{a}{x}_{n}}$=2(a>0,a≠1).设y3=18,y6=12.
(1)证明{yn}为等差数列;
(2)求数列{yn}的前n项和的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为R,若?常数c>0,对?x∈R,有f(x+c)>f(x-c),则称函数f(x)具有性质P.给定下列三个函数:①f(x)=2x-($\frac{1}{2}$)x,②f(x)=sinx,③f(x)=x3-x其中,具有性质P的函数的序号是(  )
A.①②B.C.②③D.①③

查看答案和解析>>

同步练习册答案