【题目】如图,已知圆的半径为,,是圆上的一个动点,的中垂线交于点,以直线为轴,的中垂线为轴建立平面直角坐标系。
(Ⅰ)若点的轨迹为曲线,求曲线的方程;
(Ⅱ)设点为圆上任意一点,过作圆的切线与曲线交于两点,证明:以为直径的圆经过定点,并求出该定点的坐标。
【答案】(Ⅰ);(Ⅱ)见解析.
【解析】
(Ⅰ)根据中垂线性质得出:,从而知点轨迹是椭圆,由椭圆标准方程可得.
(Ⅱ)当切线斜率不存在时,可得两圆,它们的交点为原点,接着证明其它的圆都过原点即可,即证,也即证,为此可设直线方程为,由直线与圆相切得关系式,设,由直线方程与椭圆方程联立化简可得,计算可得结论.
(Ⅰ)因为是线段中垂线上的点,所以
所以:
所以:点的轨迹是以为焦点的椭圆
于是:,于是
所以:曲线的方程是
(Ⅱ)当直线斜率不存在时,
取,则,此时圆的方程是
取,则,此时圆的方程是
两圆相交于原点,下面证明原点满足题目条件,即证:
当直线斜率不存在时,设直线方程为
因为直线与圆相切,所以圆心到直线的距离,即①
由可得:
设,则
于是:
所以:
将①代入可得:
综上所述:以为直径的圆经过定点
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数的最小值为.
(1)求;
(2)是否存在实数同时满足下列条件:
①;
②当的定义域为时, 值域为?若存在, 求出的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义域为的奇函数,当.
(Ⅰ)求出函数在上的解析式;
(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;
(Ⅲ)若关于的方程有三个不同的解,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N人参加,现将所有参加者按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如下所示.已知[35,40)这组的参加者是8人.
(1)求N和[30,35)这组的参加者人数N1;
(2)已知[30,35)和[35,40)这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学老师的概率;
(3)组织者从[45,55)这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为x,求x的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点分别是椭圆的左右顶点, 为其右焦点, 与的等比中项是,椭圆的离心率为.
(1)求椭圆的方程;
(2)设不过原点的直线与该轨迹交于两点,若直线的斜率依次成等比数列,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为( )
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com