精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆的半径为,是圆上的一个动点,的中垂线于点,以直线轴,的中垂线为轴建立平面直角坐标系。

(Ⅰ)若点的轨迹为曲线,求曲线的方程;

(Ⅱ)设点为圆上任意一点,过作圆的切线与曲线交于两点,证明:以为直径的圆经过定点,并求出该定点的坐标。

【答案】(Ⅰ);(Ⅱ)见解析.

【解析】

(Ⅰ)根据中垂线性质得出:,从而知点轨迹是椭圆,由椭圆标准方程可得.

(Ⅱ)当切线斜率不存在时,可得两圆,它们的交点为原点,接着证明其它的圆都过原点即可,即证,也即证,为此可设直线方程为,由直线与圆相切得关系式,设,由直线方程与椭圆方程联立化简可得,计算可得结论.

(Ⅰ)因为是线段中垂线上的点,所以

所以:

所以:点的轨迹是以为焦点的椭圆

于是:,于是

所以:曲线的方程是

(Ⅱ)当直线斜率不存在时,

,,此时圆的方程是

,则,此时圆的方程是

两圆相交于原点,下面证明原点满足题目条件,即证:

当直线斜率不存在时,设直线方程为

因为直线与圆相切,所以圆心到直线的距离,即

可得:

,则

于是:

所以:

将①代入可得:

综上所述:以为直径的圆经过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的最小值为.

(1)求

(2)是否存在实数同时满足下列条件:

的定义域为时, 值域为?若存在, 求出的值若不存在, 说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数,当.

(Ⅰ)求出函数上的解析式;

(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;

(Ⅲ)若关于的方程有三个不同的解,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N人参加,现将所有参加者按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如下所示.已知[35,40)这组的参加者是8人.
(1)求N和[30,35)这组的参加者人数N1
(2)已知[30,35)和[35,40)这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学老师的概率;
(3)组织者从[45,55)这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为x,求x的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的左右顶点, 为其右焦点, 的等比中项是,椭圆的离心率为.

(1)求椭圆的方程;

(2)设不过原点的直线与该轨迹交于两点,若直线的斜率依次成等比数列,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是Q,点A(8,7),则|PA|+|PQ|的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为(
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤

查看答案和解析>>

同步练习册答案