精英家教网 > 高中数学 > 题目详情
已知函数y=sin2x+2sinxcosx+3cos2x,x∈R.
(1)函数y的最小正周期;
(2)函数y的递增区间.
分析:(1)先对函数解析式整理,然后利用同角三角函数的基本关系,二倍角公式和两角和公式化简整理求得函数f(x)的解析式,进而利用正弦函数的性质性质求得函数的最小正周期.
(2)根据(1)中函数的解析式,利用正弦函数的单调性求得函数递增时2x+
π
4
的范围,进而求得x的范围,即函数f(x)的递增区间.
解答:解:(1)y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+(1+cos2x)
=sin2x+cos2x+2
=
2
sin(2x+
π
4
)+2


∴函数的最小正周期T=
2
=π.
(2)由2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,得kπ-
8
≤x≤kπ+
π
8
(k∈Z),
∴函数的增区间为[kπ-
8
,kπ+
π
8
]
(k∈Z).
点评:本题主要考查了同角三角函数的基本关系,二倍角公式和两角和公式化简求值.考查了学生对三角函数基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过点P,若角α的终边经过点P,则cos2α-sin2α的值等于
-
8
13
-
8
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),f(x)图象上每个点的纵坐标保持不变,将横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,得到的曲线与y=sinx图象相同,则y=f(x)的函数表达式为(    )

A.y=sin(-)                     B.y=sin2(x+

C.y=sin(+)                     D.y=sin(2x-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于(  )
A.
3
13
B.
5
13
C.-
3
13
D.-
5
13

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省衡水市冀州市高三(上)期中数学试卷A(理科)(解析版) 题型:选择题

已知函数y=loga(x-1)+3(a>0且a≠1)的图象恒过定点P,若角α的终边经过点P,则sin2α-sin2α的值等于( )
A.
B.
C.-
D.-

查看答案和解析>>

同步练习册答案