精英家教网 > 高中数学 > 题目详情
如图,BC=4原点O是BC的中点,点A(
3
2
1
2
,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则AD的长度为
6
6
分析:根据已知,求出D点的坐标,结合A的坐标,代入空间两点之间距离公式,可得答案.
解答:解:∵点D在平面yoz上,
∴点D的横坐标为0,
又∵BC=4,原点O是BC的中点,
∴∠BDC=90°,∠DCB=30°,
∴竖坐标为z=4•sin30°•sin60°=
3

纵坐标为y=-(2-4•sin30°•cos60°)=-1,
∴D(0,-1,
3
),
∴|AD|=
(
3
2
)2+(
1
2
+1)2+(
3
)2
=
6

故答案为:
6
点评:本题考查的知识点是空间两点之间的距离,其中根据已知求出D点坐标是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,F是抛物线y2=2px(p>0)的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点,|PA|+|PF|的最小值为8.
(1)求抛物线方程;
(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图, BC=4,原点O是BC的中点,点A(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则AD的长度为    .

查看答案和解析>>

同步练习册答案