精英家教网 > 高中数学 > 题目详情
11.已知数列{an}满足a1=$\frac{1}{2}$,an=$\frac{{a}_{n-1}}{2-{a}_{n-1}}$(n≥2).
(1)求证:{$\frac{1}{a{\;}_{n}}$-1}为等比数列,并求出{an}的通项公式;
(2)若bn=$\frac{2n-1}{{a}_{n}}$,求{bn}的前n项和Sn

分析 (1)由已知得$\frac{1}{{a}_{n}}=\frac{2-{a}_{n-1}}{{a}_{n-1}}$=$\frac{2}{{a}_{n-1}}-1$,从而$\frac{1}{{a}_{n}}-1=2(\frac{1}{{a}_{n-1}}-1)$,n≥2,由此能证明{$\frac{1}{a{\;}_{n}}$-1}为首项为1,公比为2的等比数列,从而能求出{an}的通项公式.
(2)由bn=$\frac{2n-1}{{a}_{n}}$=(2n-1)(2n-1+1)=(2n-1)•2n-1+2n-1,利用分组求和法和错位相减求和法能求出{bn}的前n项和Sn

解答 证明:(1)∵数列{an}满足a1=$\frac{1}{2}$,an=$\frac{{a}_{n-1}}{2-{a}_{n-1}}$(n≥2),
∴$\frac{1}{{a}_{n}}=\frac{2-{a}_{n-1}}{{a}_{n-1}}$=$\frac{2}{{a}_{n-1}}-1$,n≥2
∴$\frac{1}{{a}_{n}}-1=2(\frac{1}{{a}_{n-1}}-1)$,n≥2,
又$\frac{1}{{a}_{1}}-1=2-1=1$,
∴{$\frac{1}{a{\;}_{n}}$-1}为首项为1,公比为2的等比数列,
∴$\frac{1}{{a}_{n}}-1={2}^{n-1}$,$\frac{1}{{a}_{n}}={2}^{n-1}+1$,
∴${a}_{n}=\frac{1}{{2}^{n-1}+1}$.
解:(2)∵bn=$\frac{2n-1}{{a}_{n}}$=$\frac{2n-1}{\frac{1}{{2}^{n-1}+1}}$=(2n-1)(2n-1+1)=(2n-1)•2n-1+2n-1,
∴{bn}的前n项和:
Sn=1+3•2+5•22+…+(2n-1)•2n-1+2(1+2+3+…+n)-n
=1+3•2+5•22+…+(2n-1)•2n-1+2×$\frac{n(1+n)}{2}$-n
=1+3•2+5•22+…+(2n-1)•2n-1+n2,①
2Sn=2+3•22+5•23+…+(2n-1)•2n+2n2,②
②-①,得Sn=-1-(22+23+…+2n)+(2n-1)•2n+n2
=-1-$\frac{4(1-{2}^{n-1})}{1-2}$+(2n-1)•2n+n2
=(2n-3)•2n+3+n2
∴{bn}的前n项和Sn=(2n-3)•2n+3+n2

点评 本题考查等比数列的证明,考查数列的前n项和的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x•1nx,g(x)=ax2-2ax+1.
(1)求函数f(x)的单调区间;
(2)若x∈[1,2],a∈[1,2],求证:f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若弹簧挂着的小球做简谐运动,时间t(s)与小球相对于平衡位置(即静止时的位置)的高度h(cm)之间的函数关系式是h=2sin(ωt+$\frac{π}{4}$),t∈[0,+∞),其图象如图所示.
(1)求ω(ω>0)的值;
(2)小球开始运动(即t=0)时的位置在哪里?
(3)小球运动的最高点、最低点与平衡位置的距离分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共线的两个向量,给出下列四组向量:①$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;②$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$与$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$;③$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$与4$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$.其中能作为平面内所有向量的一组基底的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点R(-1,0)的直线l与椭圆C交于P,Q两点,且$\overrightarrow{PR}$=2$\overrightarrow{RQ}$.(1)当直线l的倾斜角为60°时,求三角形OPQ的面积;
(2)当三角形OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知某产品的次品率为0.04,现要抽取这种产产品进行检验,则要检查到次品的概率达到0.95以上,至少要选74个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=$\sqrt{{x}^{2}+4}$+$\sqrt{{x}^{2}-2x+2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3+x2+bx (其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.
(1)求f(x)的表达式;
(2)求g(x)在区间[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:平面PAC⊥平面PDB.

查看答案和解析>>

同步练习册答案