精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的圆台中,是下底面圆的直径,是上底面圆的直径,是圆台的一条母线.

()已知分别为的中点,求证:平面

()已知,求二面角的余弦值

【答案】()证明见解析;() .

【解析】

试题分析:)取中点,连结,推导出平面平面,由此能证明平面)由,知,以为原点,轴,轴,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

试题解析:()连结,取的中点,连结在上底面内,不在上底面内,上底面,………………2分

平面,又平面平面

平面………………4分

所以平面平面,由平面平面………………5分

()连结………………6分

为原点,分别以轴建立空间直角坐标系,

于是有

可得平面中的向量,于是得平面的一个法向量………………9分

又平面的一个法向量………………10分

设二面角,则

二面角的余弦值为………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,函数处的切线互相垂直,求的值;

2)若函数在定义域内不单调,求的取值范围;

(3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,问如何设计才能使公园占地面积最大,求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若函数处的切线方程为,求的值;

(II)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产某种产品时的能耗y与产品件数x之间的关系式为y=ax+.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.

(1)写出函数y关于x的解析式;

(2)用列表法表示此函数,并画出图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实数根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的右焦点与抛物线的焦点重合,点M在椭圆E上.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)设,直线与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 若x>1,求x+的最小值;

(2) 若x>0,y>0,且2x+8y-xy=0,求xy的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为梯形, 平面 中点.

(1)求证:平面平面

(2)线段上是否存在一点,使平面?若有,请找出具体位置,并进行证明:若无,请分析说明理由.

查看答案和解析>>

同步练习册答案