精英家教网 > 高中数学 > 题目详情
已知椭圆(a>b>0)的右焦点为F,经过点F作倾斜角为135°的直线l交椭圆于A、B两点,线段AB的中点为M,且直线AB与OM的夹角为θ,且tanθ=3,求这个椭圆离心率.

思路点拨:本题先根据题意求出直线AB的斜率,再依据直线与椭圆的方程联立消去其中一个未知数,找到相应的两个交点A、B的横(或纵)坐标之间的关系,表示出相应的中点M的坐标,从而将问题解决.

解:设点A(x1,y1)、B(x2,y2),AB的中点为M(x0,y0),则,两式相减可得kAB=,∴a2y02=b2x02.

又kOM=,而=tanθ=3,故kOM=或kOM=2(∵a>b,<1,

    ∴kOM=2舍去).

    ∴1-e2=,e=为所求.

[一通百通] 有关椭圆与直线的交点问题,通常的方法就是联立它们的方程组成方程组,再由此消去一个未知数,从而利用根与系数间的关系将问题解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆(ab>0)的离心率为,,则椭圆方程为(  )

A.                B.

C.                D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆(ab>0)的两个焦点为F1F2,过F2作垂直于x轴的直线与椭圆相交,一个交点为P,若∠PF1F2=30°,那么椭圆的离心率是(  )

A.sin30°B.cos30°C.tan30°D.sin45°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆 (a>b>0),AB是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省协作体高三5月第二次联考理科数学试卷(解析版) 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:

4

1

2

4

2

(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,

(i) 求的最值.

(ii) 求四边形ABCD的面积;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省绵阳市高三第二次月考文科数学试卷 题型:解答题

已知椭圆(a>b>0)的左、右焦点分别为Fl vF,离心率,A为右顶点,K为右准线与x轴的交点,且.

(1) 求椭圆的标准方程

(2) 设椭圆的上顶点为B,问是否存在直线l,使直线l交椭圆于C,D两点,且椭圆的左焦点F1恰为的垂心?若存在,求出l的方程;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案