精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.
(I)求证:平面
(II)求证:
(III)设PD="AD=a," 求三棱锥B-EFC的体积.
(Ⅰ)见解析
(Ⅱ)证明见解析
(Ⅲ)∴
第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是的中点,    
.       …4分
(Ⅱ)证明:四边形为正方形,


.    ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图示,边长为4的正方形与正三角形所在平面互相垂直,M、Q分别是PC,AD的中点。

(1)求证:
(2)求多面体的体积
(3)试问:在线段AB上是否存在一点N,使面若存在,指出N的位置,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为的中点,点为平面内一点,线段互相平分,则满足的实数的值有(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个棱柱为正四棱柱的条件是(  )
A.底面是正方形,有两个侧面垂直于底面
B.底面是正方形,有两个侧面是矩形
C.底面是菱形,且有一个顶点处的三条棱两两垂直
D.每个底面是全等的矩形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,底面为等腰直角三角形,为棱上一点,且平面平面.
(Ⅰ)求证:点为棱的中点;
(Ⅱ)判断四棱锥的体积是否相等,并证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在所有棱长都相等的斜三棱柱中,已知,且,连接
(1)求证:平面
(2)求证:四边形为正方形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A,B,C,D为四个不同的点,则它们能确定(  )个平面。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB的长度为(   )
A.B.C.6D.18

查看答案和解析>>

同步练习册答案