精英家教网 > 高中数学 > 题目详情

【题目】已知条件p:-1≤x≤10,qx2-4x+4-m2≤0(m>0)不变,若 pq的必要而不充分条件,如何求实数m的取值范围?

【答案】【解答】p:-1≤x≤10.
qx2-4x+4-m2≤0
[x-(2-m)][x-(2+m)]≤0(m>0)
2-mx≤2+m(m>0).
因为 p q的必要而不充分条件,
所以pq的充分不必要条件,
即{x|-1≤x≤10} {x|2-mx≤2+m},
故有 解得m≥8.所以实数m的范围为{m|m≥8}.
【解析】对于结论中含有参数问题,可先将其转化为最简形式,利用充分条件、必要条件或充要条件揭示命题和结论之间的从属关系,借助于Venn图或数轴的直观性列方程或不等式,即可求出参数的值或取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点 ,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2)有如下结论
1)f(x1+x2)=f(x1)f(x2
2)f(x1x2)=f(x1)+f(x2
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
当f(x)=lgx时,上述结论正确的序号为 . (注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的减函数f(x)且满足对任意的实数x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)解关于x的不等式f(log2x﹣1)+f(log2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(αβ),函数

(1)证明f(x)在区间(α,β)上是增函数;

(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中的真命题是(  )
A.
B.
C.使x5<1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,若,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列语句:
是无限循环小数;②x2-3x+2=0;③当x=4时,2x>0;
④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;
⑥作△ABC≌△A'B'C';⑦二次函数的图像太美了!
⑧4是集合{1,2,3}中的元素.
其中不是命题的有,是真命题的有.(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2)且当x∈[﹣2,0]时,f(x)=( x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是

查看答案和解析>>

同步练习册答案