精英家教网 > 高中数学 > 题目详情

【题目】为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为(

A.9B.10C.11D.12

【答案】C

【解析】

考虑每一列最多有3个人,故最多有12个人,排除12人的情况,将11人的情况作图得到答案.

考虑每一列最多有3个人,故最多有12个人;

若人数为12,则每一列的空位置必须在2行或者第3行,则会产生第1行和第4行有连续的3个人,不满足;

11个人满足,如下图:

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为151121376l95,则该数列的第8项为( )

A.99B.131C.139D.141

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱中,底面为等腰直角三角形,是侧棱上一点,设

(1) 若,求的值;

(2) 若,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设.

)求的极小值;

)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形,,点的中点,且,点上,且.

1)求证:平面

2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点.对任意的点,定义.任取点,记,若此时成立,则称点相关.

1)分别判断下面各组中两点是否相关,并说明理由;

;②

2)给定,点集

)求集合中与点相关的点的个数;

)若,且对于任意的,点相关,求中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20202月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有的男生喜欢网络课程,有的女生不喜欢网络课程,且有的把握但没有的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形ABCD中,ABCDADABBC1CD2ECD中点,以AE为折痕把ADE折起,使点D到达点P的位置(P平面ABCE).

1)证明:AEPB

2)若直线PB与平面ABCE所成的角为,求二面角APEC的余弦值.

查看答案和解析>>

同步练习册答案