精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),则a2014=
 
分析:利用递推公式依次求出前8项,得到该数列是周期数列,由此能求出a2014
解答:解:∵a1=1,a2=5,an+2=an+1-an(n∈N*),
∴a3=5-1=4,
a4=4-5=-1,
a5=-1-4=-5,
a6=-5-(-1)=-4,
a7=-4-(-5)=1,
a8=1-(-4)=5,
∴数列{an}是周期为6的周期数列,
∵2014=6×335+4,
∴a2014=a4=-1.
故答案为:-1.
点评:本题考查数列的递推公式的应用,是基础题,解题时要注意递推思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案