·ÖÎö £¨I£©ÀëÐÄÂÊ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¿ÉµÃa2=2c2=2b2£¬ÓÖxÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶γ¤2$\sqrt{b}$=2b£¬½âµÃb£¬a2£®¿ÉµÃÇúÏßC2µÄ·½³Ì£»ÇúÏßC1µÄ·½³Ì£®
£¨II£©ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®M£¨0£¬-1£©£®ÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃ£ºx2-kx-1=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¡¢ÊýÁ¿»ýÔËËãÐÔÖʼ´¿ÉÖ¤Ã÷MA¡ÍMB£®
£¨III£©ÉèÖ±ÏßMAµÄ·½³Ì£ºy=k1x-1£»MBµÄ·½³ÌΪ£ºy=k2x-1£¬ÇÒk1k2=-1£®·Ö±ðÓëÅ×ÎïÏßÍÖÔ²·½³ÌÁªÁ¢½âµÃA£¬B£¬D£¬EµÄ×ø±ê£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¼´¿ÉµÃ³ö£¬$\frac{{S}_{1}}{{S}_{2}}$=¦Ë£¬ÔÙÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð £¨I£©½â£ºÀëÐÄÂÊ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¡àa2=2c2=2b2£¬
ÓÖxÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶γ¤2$\sqrt{b}$=2b£¬½âµÃb=1£®¡àa2=2£®
¡àÇúÏßC2µÄ·½³ÌΪ£ºy=x2-1£»
ÇúÏßC1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨II£©Ö¤Ã÷£ºÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®M£¨0£¬-1£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y={x}^{2}-1}\end{array}\right.$£¬»¯Îª£ºx2-kx-1=0£¬¡àx1+x2=k£¬x1•x2=-1£®
¡à$\overrightarrow{MA}•\overrightarrow{MB}$=x1x2+£¨y1+1£©£¨y2+1£©=£¨k2+1£©x1•x2+k£¨x1+x2£©+1=-£¨k2+1£©+k•k+1=0£®
¡àMA¡ÍMB£®
£¨III£©½â£ºÉèÖ±ÏßMAµÄ·½³Ì£ºy=k1x-1£»MBµÄ·½³ÌΪ£ºy=k2x-1£¬ÇÒk1k2=-1£®
ÁªÁ¢$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{y={x}^{2}-1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x={k}_{1}}\\{y={k}_{1}^{2}-1}\end{array}\right.$£¬¡àA$£¨{k}_{1}£¬{k}_{1}^{2}-1£©$£®
ͬÀí¿ÉµÃB$£¨{k}_{2}£¬{k}_{2}^{2}-1£©$£®
S1=$\frac{1}{2}$|MA|•|MB|=$\frac{1}{2}$$\sqrt{1+{k}_{1}^{2}}$$\sqrt{1+{k}_{2}^{2}}$|k1|•|k2|£®
$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=\frac{4{k}_{1}}{1+2{k}_{1}^{2}}}\\{y=\frac{2{k}_{1}^{2}-1}{1+2{k}_{1}^{2}}}\end{array}\right.$£¬¡àD$£¨\frac{4{k}_{1}}{1+2{k}_{1}^{2}}£¬\frac{2{k}_{1}^{2}-1}{1+2{k}_{1}^{2}}£©$£®
ͬÀí¿ÉµÃ£ºE$£¨\frac{4{k}_{2}}{1+2{k}_{2}^{2}}£¬\frac{2{k}_{2}^{2}-1}{1+2{k}_{2}^{2}}£©$£¬
¡àS2=$\frac{1}{2}|MD|•|ME|$=$\frac{1}{2}$$\sqrt{1+{k}_{1}^{2}}$$\sqrt{1+{k}_{2}^{2}}$•$\frac{|16{k}_{1}{k}_{2}|}{£¨1+2{k}_{1}^{2}£©£¨1+2{k}_{2}^{2}£©}$£®
¡à$\frac{{S}_{1}}{{S}_{2}}$=¦Ë=$\frac{£¨1+2{k}_{1}^{2}£©£¨1+2{k}_{2}^{2}£©}{16}$=$\frac{5+2£¨{k}_{1}^{2}+\frac{1}{{k}_{1}^{2}}£©}{16}$$¡Ý\frac{9}{16}$£¬
ËùÒԦ˵Ä×îСֵΪ$\frac{9}{16}$£¬´Ëʱk=1»ò-1£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²Å×ÎïÏßÏཻÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{¦Ð}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | f¡ä£¨2£©£¼0 | B£® | f¡ä£¨2£©=0 | C£® | f¡ä£¨2£©£¾0 | D£® | f¡ä£¨2£©²»´æÔÚ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 2 | B£® | 1 | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com