10£®Èçͼ£¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬xÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶㤵ÈÓÚC1µÄ¶ÌÖ᳤£¬C2ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔ­µãOµÄÖ±ÏßlÓëC2ÏཻÓÚµãA¡¢B£¬Ö±ÏßMA£¬MB·Ö±ðÓëC1ÏཻÓÚµãD¡¢E£®
£¨¢ñ£©ÇóC1¡¢C2µÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤£ºMA¡ÍMB£º
£¨¢ó£©¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðΪS1£¬S2£¬Èô$\frac{{S}_{1}}{{S}_{2}}$=¦Ë£¬Çó¦ËµÄ×îСֵ£®

·ÖÎö £¨I£©ÀëÐÄÂÊ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¿ÉµÃa2=2c2=2b2£¬ÓÖxÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶γ¤2$\sqrt{b}$=2b£¬½âµÃb£¬a2£®¿ÉµÃÇúÏßC2µÄ·½³Ì£»ÇúÏßC1µÄ·½³Ì£®
£¨II£©ÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®M£¨0£¬-1£©£®ÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃ£ºx2-kx-1=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¡¢ÊýÁ¿»ýÔËËãÐÔÖʼ´¿ÉÖ¤Ã÷MA¡ÍMB£®
£¨III£©ÉèÖ±ÏßMAµÄ·½³Ì£ºy=k1x-1£»MBµÄ·½³ÌΪ£ºy=k2x-1£¬ÇÒk1k2=-1£®·Ö±ðÓëÅ×ÎïÏßÍÖÔ²·½³ÌÁªÁ¢½âµÃA£¬B£¬D£¬EµÄ×ø±ê£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¼´¿ÉµÃ³ö£¬$\frac{{S}_{1}}{{S}_{2}}$=¦Ë£¬ÔÙÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð £¨I£©½â£ºÀëÐÄÂÊ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¡àa2=2c2=2b2£¬
ÓÖxÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶γ¤2$\sqrt{b}$=2b£¬½âµÃb=1£®¡àa2=2£®
¡àÇúÏßC2µÄ·½³ÌΪ£ºy=x2-1£»
ÇúÏßC1µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨II£©Ö¤Ã÷£ºÉèÖ±ÏßABµÄ·½³ÌΪ£ºy=kx£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®M£¨0£¬-1£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y={x}^{2}-1}\end{array}\right.$£¬»¯Îª£ºx2-kx-1=0£¬¡àx1+x2=k£¬x1•x2=-1£®
¡à$\overrightarrow{MA}•\overrightarrow{MB}$=x1x2+£¨y1+1£©£¨y2+1£©=£¨k2+1£©x1•x2+k£¨x1+x2£©+1=-£¨k2+1£©+k•k+1=0£®
¡àMA¡ÍMB£®
£¨III£©½â£ºÉèÖ±ÏßMAµÄ·½³Ì£ºy=k1x-1£»MBµÄ·½³ÌΪ£ºy=k2x-1£¬ÇÒk1k2=-1£®
ÁªÁ¢$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{y={x}^{2}-1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x={k}_{1}}\\{y={k}_{1}^{2}-1}\end{array}\right.$£¬¡àA$£¨{k}_{1}£¬{k}_{1}^{2}-1£©$£®
ͬÀí¿ÉµÃB$£¨{k}_{2}£¬{k}_{2}^{2}-1£©$£®
S1=$\frac{1}{2}$|MA|•|MB|=$\frac{1}{2}$$\sqrt{1+{k}_{1}^{2}}$$\sqrt{1+{k}_{2}^{2}}$|k1|•|k2|£®
$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=\frac{4{k}_{1}}{1+2{k}_{1}^{2}}}\\{y=\frac{2{k}_{1}^{2}-1}{1+2{k}_{1}^{2}}}\end{array}\right.$£¬¡àD$£¨\frac{4{k}_{1}}{1+2{k}_{1}^{2}}£¬\frac{2{k}_{1}^{2}-1}{1+2{k}_{1}^{2}}£©$£®
ͬÀí¿ÉµÃ£ºE$£¨\frac{4{k}_{2}}{1+2{k}_{2}^{2}}£¬\frac{2{k}_{2}^{2}-1}{1+2{k}_{2}^{2}}£©$£¬
¡àS2=$\frac{1}{2}|MD|•|ME|$=$\frac{1}{2}$$\sqrt{1+{k}_{1}^{2}}$$\sqrt{1+{k}_{2}^{2}}$•$\frac{|16{k}_{1}{k}_{2}|}{£¨1+2{k}_{1}^{2}£©£¨1+2{k}_{2}^{2}£©}$£®
¡à$\frac{{S}_{1}}{{S}_{2}}$=¦Ë=$\frac{£¨1+2{k}_{1}^{2}£©£¨1+2{k}_{2}^{2}£©}{16}$=$\frac{5+2£¨{k}_{1}^{2}+\frac{1}{{k}_{1}^{2}}£©}{16}$$¡Ý\frac{9}{16}$£¬
ËùÒԦ˵Ä×îСֵΪ$\frac{9}{16}$£¬´Ëʱk=1»ò-1£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²Å×ÎïÏßÏཻÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êý$y=lg£¨x-2£©+\sqrt{3-x}$£¬ÔòÆ䶨ÒåÓòΪ£¨2£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈôË«ÇúÏß$\frac{x^2}{9}-\frac{y^2}{4}=1$µÄÁ½Ìõ½¥½üÏßÇ¡ºÃÊÇÇúÏß$y=a{x^2}+\frac{1}{3}$µÄÁ½ÌõÇÐÏߣ¬ÔòaµÄֵΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªsin¦Á+cos¦Á=$\frac{1}{5}$   ÇÒ 0£¼¦Á£¼¦ÐÇó£º
£¨1£©sin¦Ácos¦Á£»
£¨2£©tan¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªµãP£¨tan¦Á£¬sin¦Á-cos¦Á£©ÔÚµÚÒ»ÏóÏÞ£¬ÇÒ0¡Ü¦Á¡Ü2¦Ð£¬Ôò½Ç¦ÁµÄÈ¡Öµ·¶Î§ÊÇ$£¨\frac{¦Ð}{4}£¬\frac{¦Ð}{2}£©¡È£¨¦Ð£¬\frac{5¦Ð}{4}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èç¹ûº¯Êýy=3cos£¨2x+¦Õ£©µÄͼÏó¹ØÓÚµã$£¨{\frac{4¦Ð}{3}£¬0}£©$£¬Ôò|¦Õ|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{3}$D£®$\frac{¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èç¹ûÇúÏßy=f£¨x£©Ôڵ㣨2£¬3£©´¦µÄÇÐÏß¹ýµã£¨-1£¬2£©£¬ÔòÓУ¨¡¡¡¡£©
A£®f¡ä£¨2£©£¼0B£®f¡ä£¨2£©=0C£®f¡ä£¨2£©£¾0D£®f¡ä£¨2£©²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¹ýÔ­µãOµÄÔ²x2+y2-2ax=0ÓÖ¹ýµã£¨4£¬2£©£¬£¨1£©ÇóÔ²µÄ·½³Ì£¬£¨2£©AΪԲÉ϶¯µã£¬ÇóÏÒOAÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®3¡¢ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}1-{2^x}£¬x¡Ü0\\{x^2}£¬x£¾0\end{array}\right.$£¬Ôòf[f£¨-1£©]=£¨¡¡¡¡£©
A£®2B£®1C£®$\frac{1}{4}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸