精英家教网 > 高中数学 > 题目详情

【题目】设关于的一元二次方程.

(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有根的概率.

【答案】(1);(2).

【解析】

试题分析:(1)当时,方程有实根的充要条件为.写出所有可能的取法,从中找出满足条件的基本事件,即可得到概率;(2)分别求出的矩形面积和满足 的三角形面积,用几何概型求解.

试题解析:设事件方程有实根.

(1)当时,方程有实根的充要条件为.

基本事件共12个:.其中第一个数表示的取值,第二个数表示的取值.

事件中包含9个基本事件,事件发生的概率为.

(2)试验的全部结果所构成的区域为,构成事件的区域为

所以所求的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD平面ABCDPDQAQA=AB=PD

I证明:平面PQC平面DCQ

II求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫无债务致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费不计息.在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q百件与销售价格P的关系如图所示;每月需各种开支2 000元.

1当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1当x[1,4]时,求函数的值域;

2如果对任意的x[1,4],不等式恒成立,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,程序框图的输出结果为-18,那么判断框表示的“条件”应该是

A. B C D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a∈R.

)当a=1时,判断fx)的单调性;

)若gx)在其定义域内为增函数,求正实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明对本班同学做调查,提出问题你考试作弊吗?这样的问法______(填合理不合理),理由是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数的导函数为,且满足,当时有恒成立,若非负实数满足,则的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如下表:

(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;

(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案