精英家教网 > 高中数学 > 题目详情

【题目】定义在上的偶函数,当时,.

Ⅰ.写出上的解析式;

Ⅱ.求出上的最大值;

Ⅲ.上的增函数,求实数的取值范围。

【答案】(1) ;(2)当时,的最大值为;当时,的最大值为;(3).

【解析】

(1)设x∈[0,1],则-x∈[-1,0],由条件可得f(-x)的解析式.再由f(-x)=f(x),可得f(x)的解析式.
(2)令t=2x,则t∈[1,2],故有,再利用二次函数的性质求得g(t)的最大值.
(3)由于f(x)是[0,1]上的增函数,可得在[1,2]上单调递增,故有,由此求得实数a的取值范围.

解:(1)设,则

为偶函数,

(2)令

,当,即时,

,即时,

综上,当时,的最大值为

时,的最大值为

(3)由题设函数上是增函数,则

上为增函数,,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列4个命题,其中正确命题的个数是(
①计算:9192除以100的余数是1;
②命题“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定义域内是单调函数而且又是奇函数;
④命题p:“|a|+|b|≤1”是命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要条件.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分8分)某班50名学生在一次数学测试中,成绩全部介于50100之间,将测试结果按如下方式分成五组:第一组[5060),第二组[6070),,第五组[90100].如图所示是按上述分组方法得到的频率分布直方图.

)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;

)从测试成绩在[5060∪[90100]内的所有学生中随机抽取两名同学,设其测试成绩分别为mn,求事件“|m﹣n|10”概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程

(2)设计算的导数.

【答案】(1).(2).

【解析】试题分析:(1)由导数的基本定义就出斜率,根据点斜式写出切线方程;(2) .

试题解析:

(1),则

,∴所求切线方程为.

(2) .

型】解答
束】
18

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下

1)求出表中及图中的值

2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A、B、C的对边分别是a、b、c,其面积S=a2﹣(b﹣c)2 . 若a=2,则BC边上的中线长的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的侧面PAD是正三角形,底面ABCD为菱形,A点E为AD的中点,若BE=PE.

(1)求证:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数对于任意实数,都有成立,且,当时,

1判断的单调性,并加以证明;

2试问:当时,是否有值?如果有,求出最值;如果没有,说明理由;

3解关于的不等式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x1)f(x)=-2x1f(2)15.

(1)求函数f(x)的解析式;

(2) g(x)(22m)xf(x)

若函数g(x)x[02]上是单调函数求实数m的取值范围;

求函数g(x)x[02]上的最小值.

查看答案和解析>>

同步练习册答案