【题目】过椭圆W:的左焦点F1作直线l1交椭圆于A,B两点,其中A(0,1),另一条过F1的直线l2交椭圆于C,D两点(不与A,B重合),且D点不与点0,﹣1重合.过F1作x轴的垂线分别交直线AD,BC于E,G.
(1)求B点坐标和直线l1的方程;
(2)比较线段EF1和线段GF1的长度关系并给出证明.
【答案】(1),(2)
【解析】
(1)由题意得椭圆的左焦点,根据两点式可得直线的方程,然后通过解方程组可得点坐标.(2)当与轴垂直时易得.当不与轴垂直时,设的方程为,与椭圆方程联立消元后可得,,求出直线的方程后可得点的纵坐标和点G的纵坐标,计算可得,于是.
(1)由题意可得椭圆的左焦点,
所以直线的方程为,即.
由,解得或,
所以点.
(2)①当与轴垂直时,,两点与,两点重合,由椭圆的对称性,.
②当不与轴垂直时,设的方程为,
由消去整理得,
显然.
设,,则,.
由已知得,
所以直线的方程为,
令,得点的纵坐标,
把代入上式得.
由已知得,
所以直线BC的方程为,
令,得点G的纵坐标.
把代入上式得.
所以
,
又,
即,
即.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.为曲线上的动点,点在射线上,且满足.
(Ⅰ)求点的轨迹的直角坐标方程;
(Ⅱ)设与轴交于点,过点且倾斜角为的直线与相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长轴为直径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知过点的动直线与椭圆的两个交点为,求的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l:,圆C:,则下列说法中正确的是( )
A.直线l与圆C有可能无公共点
B.若直线l的一个方向向量为,则
C.若直线l平分圆C的周长,则
D.若直线l与圆C有两个不同交点M、N,则线段MN的长的最小值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三角形PCD所在的平面与等腰梯形ABCD所在的平面垂直,AB=AD=CD,AB∥CD,CP⊥CD,M为PD的中点.
(1)求证:AM∥平面PBC;
(2)求证:BD⊥平面PBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正数数列、满足:≥,且对一切k≥2,k,是与的等差中项,是与的等比中项.
(1)若,,求,的值;
(2)求证:是等差数列的充要条件是为常数数列;
(3)记,当n≥2(n)时,指出与的大小关系并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据如图给出的2005年至2016年我国人口总量及增长率的统计图,以下结论不正确的是
A. 自2005年以来,我国人口总量呈不断增加趋势
B. 自2005年以来,我国人口增长率维持在上下波动
C. 从2005年后逐年比较,我国人口增长率在2016年增长幅度最大
D. 可以肯定,在2015年以后,我国人口增长率将逐年变大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂使用两种零件、装配两种产品、,该厂的生产能力是月产产品最多有2500件,月产产品最多有1200件;而且组装一件产品要4个、2个,组装一件产品要6个、8个,该厂在某个月能用的零件最多14000个;零件最多12000个.已知产品每件利润1000元,产品每件2000元,欲使月利润最大,需要组装、产品各多少件?最大利润多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com