设椭圆C:的两个焦点为F1、F2,点B1为其短轴的一个端点,满足,。
(1)求椭圆C的方程;
(2)过点M 做两条互相垂直的直线l1、l2设l1与椭圆交于点A、B,l2与椭圆交于点C、D,求的最小值。
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.
试对双曲线且为常数写出类似的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,曲线的参数方程为 (为参数) 是上的动点,点满足,点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过点的直线交直线于,过点的直线交轴于点,,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点、,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,求△面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设、分别为椭圆的左、右两个焦点.
(Ⅰ) 若椭圆C上的点到、两点的距离之和等于4, 写出椭圆C的方程和离心率.;
(Ⅱ) 若M、N是椭圆C上关于原点对称的两点,点P是椭圆上除M、N外的任意一点, 当直线PM、PN的斜率都存在, 并记为、时, 求证: ·为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系O中,直线与抛物线=2相交于A、B两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com