精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别是F1,F2,过点F1的直线l交椭圆C于A,B两点,若△AF2B的周长为16,过焦点F1且垂直于长轴的直线被椭圆截得的线段长为2,则椭圆C的离心率为
 
考点:直线与圆锥曲线的关系
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意得|AF1|+|BF1|+|AF2|+|BF2|=4a=16,从而求a,再由过焦点F1且垂直于长轴的直线被椭圆截得的线段长为2知2
b2
a
=2;从而解得.
解答: 解:∵△AF2B的周长为16,
∴|AF1|+|BF1|+|AF2|+|BF2|
=4a=16,
解得,a=4;
∵过焦点F1且垂直于长轴的直线被椭圆截得的线段长为2,
∴2
b2
a
=2;
解得,b2=a=4;
故b=2;
则c=
16-4
=2
3

故椭圆C的离心率为e=
2
3
4
=
3
2

故答案为:
3
2
点评:本题考查了椭圆的方程的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的增函数,且对于任意的实数x都有f(x)=-f(2-x)成立,如果实数m,n满足不等式组
f(m2-6m-5)+f(8n-n2)≤0
0≤n≤7
,则m+2n的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足z(2+i)=2-i,则z=(  )
A、
4
5
-i
B、
4
5
-
3
5
i
C、
3
5
-
4
5
i
D、
3
5
+
4
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C的方程为
x2
4
-y2=1,其渐近线为l1,l2
(1)设P(x0,y0)为双曲线上一点,P到l1,l2距离分别为d1,d2,求证:d1d2为定值
(2)斜率为1的直线l交双曲线C于A,B两点,若
OA
OB
=
20
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点A(-
3
,0)B(
3
,0)直线AM,BM相交于点M,且它们的斜率之积为-
2
3

(1)求动点M的轨迹c的方程;
(2)若直线l过点F(1,0)且绕F旋转,l与圆O:x2+y2=5相交于P,Q两点,l与轨迹c相交于R,S两点,若|PQ|∈[4,
19
],求△F′RS的面积的最大值和最小值(F′为轨迹C左焦点).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且过点(
3
1
2
).
(1)求椭圆C的方程;
(2)设椭圆的左、右顶点分别为A、B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线l:x=
34
15
分别交于M、N两点,求线段MN长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数C的离心率为
2
2
,且椭圆C的左焦点F1与抛物线y2=-4x的焦点重合.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点F1(-1,0),F2(1,0)到一斜率存在的动直线l的距离之距离之积为1,试问直线l是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1+sinx
1-sinx
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程组:
3x+y-6=0
x2+y2-2y-4=0

查看答案和解析>>

同步练习册答案