【题目】已知,为椭圆E:的左、右焦点,过点的直线l与椭圆E有且只有一个交点T.
(1)求面积的取值范围.
(2)若有一束光线从点射出,射在直线l上的T点上,经过直线l反射后,试问反射光线是否恒过定点?若是,请求出该定点;若否,请说明理由.
【答案】(1);(2)是,定点
【解析】
(1)由题意设直线l的方程为:,将代入,得,由,解得,由韦达定理得切点T的,的面积,根据m的范围即可求出;
(2)由对称性和(1)得,不妨取切点,则直线l:,设关于l对称的点为,经计算得,,直线恒过定点,即可得答案.
(1),∴直线l的斜率存在且不为0,故设直线l的方程为l:,
将代入,得,
因为直线l与椭圆E有且只有一个交点T,所以,解得,
此时求得,由,得,
,所以切点T的坐标为,又,,
所以的面积,又,,.
(2)由对称性和(1)得,不妨取切点,则直线l:,设关于l对称的点为,
则,,.
,,
故直线的斜率为,
所以直线的方程为,即恒过定点,
所以光线被直线l反射后恒过定点.
科目:高中数学 来源: 题型:
【题目】如图,已知梯形中,,,,四边形为矩形,,平面平面.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的左、右焦点分别为,.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.
(1)求椭圆的标准方程;
(2)是否存在直线:与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)若直线与曲线相交于两点,设点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(约公元前年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点、间的距离为,动点满足,则的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中,随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是:选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.
(1)请根据以上调查结果将下面列联表补充完整,并判断能否有的把握认为“恋家(在家里感到最幸福)”与城市有关:
在家里最幸福 | 在其它场所最幸福 | 合计 | |
洛阳高中生 | |||
上海高中生 | |||
合计 |
(2) 从被调查的不“恋家”的上海学生中,用分层抽样的方法选出4人接受进一步调查,从被选出的4 人中随机抽取2人到洛阳交流学习,求这2人中含有在“个人空间”感到幸福的学生的概率.
附:,其中d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼.太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”.现有下列说法:①对于圆:的所有非常数函数的太极函数中,一定不能为偶函数;②函数是圆:的一个太极函数;③存在圆,使得是圆的一个太极函数;④直线所对应的函数一定是圆:()的太极函数;⑤若函数()是圆:的太极函数,则.其中正确的是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com