精英家教网 > 高中数学 > 题目详情

【题目】把正整数排成如图(a)的三角形阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形阵,现将图(b)中的正整数按从小到大的顺序构成一个数列{an},若ak=2017,则k=

【答案】1031
【解析】解:由题意,图a中第n行有2n﹣1个数,
前n行有n× =n×n=n2个数,
图b知各行数字个数等于行数,故前n行共有n× =
∵图a每行的最后一个数恰好是行号的平方,45×45=2025,
故2017是第45行倒数第9个数,
由图b知各行数字个数等于行数,故前45行共有45× =1035,
由于最后一个数是奇数,
按图b规则知,2017是第45行倒数第5个数,故k=1035﹣4=1031,
所以答案是:1031.
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内有一个△ABC和一点O(如图),线段OA,OB,OC的中点分别为E,F,G,BC,CA,AB的中点分别为L,M,N,设 = = =

(1)试用 表示向量
(2)证明:线段EL,FM,GN交于一点且互相平分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)证明数列{an﹣n}为等比数列
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明计划在811日至820日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比, 以下为舒适, 为一般, 以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览.

(1)求小明连续两天都遇上拥挤的概率;

(2)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;

(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, ,且平面

1)设平面平面,求证:

2)求证:

3)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn满足:Sn=n2 , 等比数列{bn}满足:b2=2,b5=16
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内的动点P到定直线lx的距离与点P到定点F(0)之比为.

(1)求动点P的轨迹C的方程;

(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB,交(1)中轨迹C于点AB,且直线ANBN的斜率都存在,分别为k1k2,问k1·k2是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案