精英家教网 > 高中数学 > 题目详情

【题目】经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.

(1)若该化工厂每次订购300吨甲醇,求年存储成本费;

(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?

【答案】(1);(2)

【解析】

(1)根据题中数据求出,得到,再将代入即可得出结果;

(2)根据基本不等式求出最小值,注意等号成立的条件,即可得出结果.

(1)因为年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费.

由题意可得:

所以存储成本费

若该化工厂每次订购300吨甲醇,

所以年存储成本费为

(2)因为存储成本费

所以

当且仅当,即时,取等号;

所以每次需订购吨甲醇,可使该化工厂年存储成本费最少,最少费用为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线:交抛物线两点,

(1)若的中点为,直线的斜率为,证明:为定值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=4y的焦点为F,直线:y=kx+b(k≠0)交抛物线C于A、B两点,|AF|+|BF|=4,M(0,3).

(1)若AB的中点为T,直线MT的斜率为,证明:k· 为定值;

(2)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.

(1)求证:EF∥平面PAB;

(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,平面在棱上.

I)当时,求证平面

II)当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 离心率等于是椭圆上的两点.

(1)求椭圆的方程;

(2)是椭圆上位于直线两侧的动点.当运动时,满足,试问直线的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上动点P到定点的距离比P到直线的距离大1.记动点P的轨迹为曲线C.

1)求曲线C的方程;

2)过点的直线交曲线CAB两点,点A关于x轴的对称点是D,证明:直线恒过点F.

查看答案和解析>>

同步练习册答案