精英家教网 > 高中数学 > 题目详情

【题目】已知点F(0,1),直线l:y=﹣1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1 , |DB|=l2 , 求 的最大值.

【答案】
(1)解:设P(x,y),则Q(x,﹣1),

∴(0,y+1)(﹣x,2)=(x,y﹣1)(x,﹣2).

即2(y+1)=x2﹣2(y﹣1),即x2=4y,

所以动点P的轨迹C的方程x2=4y


(2)解:设圆M的圆心坐标为M(a,b),则a2=4b.①

圆M的半径为

圆M的方程为(x﹣a)2+(y﹣b)2=a2+(b﹣2)2

令y=0,则(x﹣a)2+b2=a2+(b﹣2)2

整理得,x2﹣2ax+4b﹣4=0.②

由①、②解得,x=a±2.

不妨设A(a﹣2,0),B(a+2,0),

= ,③

当a≠0时,由③得,

当且仅当 时,等号成立.

当a=0时,由③得, =2.

故当 时, 的最大值为


【解析】(1)先设出点P的坐标,代入 整理即可得到动点P的轨迹C的方程;(2)先利用条件设出圆的方程,并求出A、B两点的坐标以及|DA|=l1 , |DB|=l2的表达式,代入 整理后利用基本不等式求最大值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F2(1,0),点P(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过坐标原点O的两条直线EF,MN分别与椭圆C交于E,F,M,N四点,且直线OE,OM的斜率之积为﹣ ,求证:四边形EMFN的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证: (a≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列表示错误的是(
A.0??
B.??{1,2}
C.{(x,y)| ={3,4}
D.若A?B,则A∩B=A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)满足f(x+2)=f(x﹣2),当x∈(0,1)时,f(x)=3x , 则f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,过点的直线两点,交轴于点轴的距离比.

(Ⅰ)求的方程;

(Ⅱ)若,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥S﹣ABCD,底面ABCD为菱形,SA⊥平面ABCD,∠ADC=60°,E,F分别是SC,BC的中点.

(1)证明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.

查看答案和解析>>

同步练习册答案