精英家教网 > 高中数学 > 题目详情

【题目】已知,且,设命题:函数上单调递减;命题:函数上为增函数,

(1)若“”为真,求实数的取值范围

(2)若“”为假,“”为真,求实数的取值范围.

【答案】(1);(2)

【解析】试题分析:分别求出为真时, 的取值范围.

(1)pq为真,则p,q均为真,求交集即可;

(2)“pq”为真,“pq”为假,则pq假或pq真.分两种情况进行求解最后求并集即可.

试题解析:

(1)∵函数ycxR上单调递减,∴0<c<1,即p:0<c<1

又∵f(x)=x2-2cx+1在上为增函数,∴c,即q.

∴“pq”为真时,

(2)∵c>0且c≠1,∴ p: c>1, qc≠1..

又∵“pq”为真,“pq”为假,则pq假或pq真.

p真,q假时,{c|0<c<1}∩{c | ,且c≠1}={c| <c<1}.

p假,q真时,{c|c>1}∩{c|0<c }=.

综上所述,实数c的取值范围是{c| <c<1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

已知圆,过点作直线交圆两点.

)当经过圆心时,求直线的方程.

)当直线的倾斜角为时,求弦的长.

)求直线被圆截得的弦长时,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界,已知函数

Ⅰ)若是奇函数,求的值.

Ⅱ)当时,求函数上的值域,判断函数上是否为有界函数,并说明理由.

Ⅲ)若函数上是以为上界的函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,不等式f(x)≤3的解集为[﹣1,5].
(Ⅰ)求实数a的值;
(Ⅱ)若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点

)求的取值范围

)是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.

(I)求直方图中的a值;

(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间。求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,F分别在线段BCAD上,,将矩形ABEF沿EF折起记折起后的矩形为MNEF,且平面平面ECDF

求证:平面MFD

,求证:

求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧面,且,若分别为的中点.

(1)求证:∥平面

(2)求证:平面平面.

(3)求四棱锥的体积.

查看答案和解析>>

同步练习册答案