【题目】已知,且,设命题:函数在上单调递减;命题:函数 在上为增函数,
(1)若“且”为真,求实数的取值范围
(2)若“且”为假,“或”为真,求实数的取值范围.
【答案】(1);(2)
【解析】试题分析:分别求出为真时, 的取值范围.
(1)p且q为真,则p,q均为真,求交集即可;
(2)“p或q”为真,“p且q”为假,则p真q假或p假q真.分两种情况进行求解最后求并集即可.
试题解析:
(1)∵函数y=cx在R上单调递减,∴0<c<1,即p:0<c<1
又∵f(x)=x2-2cx+1在上为增函数,∴c≤,即q: .
∴“p且q”为真时,
(2)∵c>0且c≠1,∴ p: c>1, q: 且c≠1..
又∵“p或q”为真,“p且q”为假,则p真q假或p假q真.
当p真,q假时,{c|0<c<1}∩{c | ,且c≠1}={c| <c<1}.
当p假,q真时,{c|c>1}∩{c|0<c≤ }=.
综上所述,实数c的取值范围是{c| <c<1}.
科目:高中数学 来源: 题型:
【题目】(本小题满分分)
已知圆,过点作直线交圆于、两点.
(Ⅰ)当经过圆心时,求直线的方程.
(Ⅱ)当直线的倾斜角为时,求弦的长.
(Ⅲ)求直线被圆截得的弦长时,求以线段为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.
(Ⅰ)若是奇函数,求的值.
(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由.
(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,不等式f(x)≤3的解集为[﹣1,5].
(Ⅰ)求实数a的值;
(Ⅱ)若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点、.
()求的取值范围;
()是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中的a值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间。求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为 __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,,,F分别在线段BC和AD上,,将矩形ABEF沿EF折起记折起后的矩形为MNEF,且平面平面ECDF.
Ⅰ求证:平面MFD;
Ⅱ若,求证:;
Ⅲ求四面体NFEC体积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com