精英家教网 > 高中数学 > 题目详情

【题目】如图所示,边长为a的空间四边形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,则异面直线AD与BC所成角的大小为(  )

A. 30°B. 45°C. 60°D. 90°

【答案】C

【解析】

由题意得,从而,取中点,连结,从而平面,延长至点,使,连结,则四边形为正方形,即有,从而(或其补角)即为异面直线所成角,由此能求出异面直线所成角的大小.

由题意得BC=CD=a,∠BCD=90°,

∴BD=,∴∠BAD=90°,

取BD中点O,连结AO,CO,

∵AB=BC=CD=DA=a,

∴AO⊥BD,CO⊥BD,且AO=BO=OD=OC=

又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊥BD,

∴AO⊥平面BCD,

延长CO至点E,使CO=OE,连结ED,EA,EB,

则四边形BCDE为正方形,即有BC∥DE,

∴∠ADE(或其补角)即为异面直线AD与BC所成角,

由题意得AE=a,ED=a,

∴△AED为正三角形,∴∠ADE=60°,

∴异面直线AD与BC所成角的大小为60°.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市房管局为了了解该市市民20181月至20191月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:万元/平方米,进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市20181月至20191月期间当月在售二手房均价(单位:万元平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应20181月至20191月).

1)试估计该市市民的平均购房面积.

2)现采用分层抽样的方法从购房面积位于40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.

3)根据散点图选两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值,如下表所示:

0.000591

0.000164

0.00050

请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测20196月份的二手房购房均价(精确到0.001./span>

参考数据:

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研团队研发了一款快速检测某种疾病的试剂盒.为了解该试剂盒检测的准确性,质检部门从某地区(人数众多)随机选取了位患者和位非患者,用该试剂盒分别对他们进行检测,结果如下:

1)从该地区患者中随机选取一人,对其检测一次,估计此患者检测结果为阳性的概率;

2)从该地区患者中随机选取人,各检测一次,假设每位患者的检测结果相互独立,以表示检测结果为阳性的患者人数,利用(1)中所得概率,求的分布列和数学期望;

3)假设该地区有万人,患病率为.从该地区随机选取一人,用该试剂盒对其检测一次.若检测结果为阳性,能否判断此人患该疾病的概率超过?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在矩形中,在边上,.沿折起,使平面和平面都与平面垂直,连接,如图(2.

1)证明:

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体中,四边形为菱形,为正四面体,且.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点A为曲线上的动点,点B在线段OA的延长线上,且满足,点B的轨迹为

(1)求的极坐标方程;

(2)设点C的极坐标为(2,0),求△ABC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A01)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:

0项

1项

2项

3项

4项

5项

5项以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?

比较了解

不太了解

合计

理科生

文科生

合计

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.

(i)求抽取的文科生和理科生的人数;

(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,且交椭圆于AB两点,线段AB的中点是

1)求椭圆的方程;

2)过原点的直线l与线段AB相交(不含端点)且交椭圆于CD两点,求四边形面积的最大值.

查看答案和解析>>

同步练习册答案